論文の概要: Towards Building Text-To-Speech Systems for the Next Billion Users
- arxiv url: http://arxiv.org/abs/2211.09536v1
- Date: Thu, 17 Nov 2022 13:59:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 15:44:38.413273
- Title: Towards Building Text-To-Speech Systems for the Next Billion Users
- Title(参考訳): 次世代ユーザのためのテキスト音声合成システムの構築に向けて
- Authors: Gokul Karthik Kumar, Praveen S V, Pratyush Kumar, Mitesh M. Khapra,
Karthik Nandakumar
- Abstract要約: そこで我々は,ドラヴィダ語とインド・アーリア語に対する音響モデル,ボコーダ,補足的損失関数,訓練スケジュール,話者および言語多様性の選択について検討した。
我々は,13言語を対象としたTSモデルをトレーニングし,評価し,各言語における既存のモデルを大幅に改善するモデルを見出した。
- 参考スコア(独自算出の注目度): 18.290165216270452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning based text-to-speech (TTS) systems have been evolving rapidly
with advances in model architectures, training methodologies, and
generalization across speakers and languages. However, these advances have not
been thoroughly investigated for Indian language speech synthesis. Such
investigation is computationally expensive given the number and diversity of
Indian languages, relatively lower resource availability, and the diverse set
of advances in neural TTS that remain untested. In this paper, we evaluate the
choice of acoustic models, vocoders, supplementary loss functions, training
schedules, and speaker and language diversity for Dravidian and Indo-Aryan
languages. Based on this, we identify monolingual models with FastPitch and
HiFi-GAN V1, trained jointly on male and female speakers to perform the best.
With this setup, we train and evaluate TTS models for 13 languages and find our
models to significantly improve upon existing models in all languages as
measured by mean opinion scores. We open-source all models on the Bhashini
platform.
- Abstract(参考訳): ディープラーニングベースのテキスト音声(TTS)システムは、モデルアーキテクチャ、トレーニング方法論、話者と言語間の一般化など、急速に進化している。
しかし、これらの進歩はインド語の音声合成において十分に研究されていない。
このような調査は、インドの言語の数と多様性、比較的低い資源利用率、そして未検証のニューラルネットワークTSの多様な進歩を考えると、計算に費用がかかる。
本稿では,ドラヴィダ語とインド・アーリア語における音響モデル,ボコーダ,補足的損失関数,訓練スケジュール,話者および言語多様性の選択について検討する。
そこで本研究では,男性話者と女性話者を共同で訓練したfastpitchとhifi-gan v1を用いた単言語モデルを明らかにする。
この設定により、13言語でttsモデルをトレーニングし、評価し、平均的な意見スコアで測定したすべての言語で既存のモデルを大幅に改善できるモデルを見つけます。
Bhashiniプラットフォーム上のすべてのモデルをオープンソースにしています。
関連論文リスト
- An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios [76.11409260727459]
本稿では,最近のSSLベースの多言語TSシステムであるZMM-TTSの言語適応性について検討する。
本研究では,事前学習言語と対象言語との音声学的な類似性が,対象言語の適応性能に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2024-06-13T08:16:52Z) - Rapid Speaker Adaptation in Low Resource Text to Speech Systems using
Synthetic Data and Transfer learning [6.544954579068865]
本稿では,高ソース言語データと合成データを用いたトランスファー学習手法を提案する。
我々は、低リソースのインドのヒンディー語で高品質な単一話者TSシステムの訓練に3段階のアプローチを採用する。
論文 参考訳(メタデータ) (2023-12-02T10:52:00Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
本稿では,音声理解・生成のための大規模言語モデルであるAudioPaLMを紹介する。
AudioPaLMはテキストベースの言語モデルと音声ベースの言語モデルを融合する。
音声認識や音声音声翻訳などの応用により、テキストと音声を処理および生成することができる。
論文 参考訳(メタデータ) (2023-06-22T14:37:54Z) - MParrotTTS: Multilingual Multi-speaker Text to Speech Synthesis in Low
Resource Setting [16.37243395952266]
MParrotTTSは、TTS合成モデルである。
最小限の教師付きデータを持つ新しい言語に適応し、自己教師付きバックボーンのトレーニング中に見えない言語に一般化する。
音声の自然度と話者類似度を並列・言語間合成における6言語について検討した。
論文 参考訳(メタデータ) (2023-05-19T13:43:36Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
言語横断的な自己監督型視覚表現学習は、ここ数年、研究トピックとして成長している。
我々は最近提案したRAVEn(Raw Audio-Visual Speechs)フレームワークを用いて,未ラベルデータを用いた音声-視覚モデルの事前学習を行う。
1)データ量が多いマルチ言語モデルはモノリンガルモデルよりも優れているが、データの量を維持すると、モノリンガルモデルの性能が向上する傾向にある。
論文 参考訳(メタデータ) (2023-03-14T17:05:08Z) - Learning to Speak from Text: Zero-Shot Multilingual Text-to-Speech with
Unsupervised Text Pretraining [65.30528567491984]
本稿では,対象言語に対するテキストのみのデータを用いたゼロショット多言語TS法を提案する。
テキストのみのデータを使用することで、低リソース言語向けのTSシステムの開発が可能になる。
評価の結果,文字誤り率が12%未満のゼロショットTSは,見当たらない言語では高い知能性を示した。
論文 参考訳(メタデータ) (2023-01-30T00:53:50Z) - Virtuoso: Massive Multilingual Speech-Text Joint Semi-Supervised
Learning for Text-To-Speech [37.942466944970704]
本稿では,テキスト音声合成(TTS)モデルのための多言語共同学習フレームワークであるVirtuosoを提案する。
様々な音声およびテキストデータからTSモデルをトレーニングするために、教師なし(TTSおよびASRデータ)と教師なし(非教師なし)のデータセットを扱うように、異なるトレーニングスキームが設計されている。
実験により、Virtuosoで訓練された多言語TSモデルは、見かけの言語におけるベースラインモデルよりも、自然性や知性に優れることが示された。
論文 参考訳(メタデータ) (2022-10-27T14:09:48Z) - Low-Resource Multilingual and Zero-Shot Multispeaker TTS [25.707717591185386]
5分間のトレーニングデータを用いて,新しい言語を学習することが可能であることを示す。
提案手法を,対象話者との親密性,自然性,類似性の観点から示す。
論文 参考訳(メタデータ) (2022-10-21T20:03:37Z) - Discovering Phonetic Inventories with Crosslingual Automatic Speech
Recognition [71.49308685090324]
本稿では,未知言語における音声認識における異なる要因(モデルアーキテクチャ,音韻モデル,音声表現の種類)の影響について検討する。
独特な音、類似した音、トーン言語は、音声による在庫発見の大きな課題である。
論文 参考訳(メタデータ) (2022-01-26T22:12:55Z) - Towards Building ASR Systems for the Next Billion Users [15.867823754118422]
インド亜大陸からの低資源言語のためのASRシステム構築に貢献する。
まず、40言語を対象に、17,000時間の生音声データをキュレートする。
この生の音声データを用いて、40のインドの言語に対して、いくつかのwav2vecスタイルモデルを事前訓練する。
論文 参考訳(メタデータ) (2021-11-06T19:34:33Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。