論文の概要: An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios
- arxiv url: http://arxiv.org/abs/2406.08911v1
- Date: Thu, 13 Jun 2024 08:16:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 18:54:07.684739
- Title: An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios
- Title(参考訳): 低資源シナリオ下におけるTSシステムの言語適応化に関する一検討
- Authors: Cheng Gong, Erica Cooper, Xin Wang, Chunyu Qiang, Mengzhe Geng, Dan Wells, Longbiao Wang, Jianwu Dang, Marc Tessier, Aidan Pine, Korin Richmond, Junichi Yamagishi,
- Abstract要約: 本稿では,最近のSSLベースの多言語TSシステムであるZMM-TTSの言語適応性について検討する。
本研究では,事前学習言語と対象言語との音声学的な類似性が,対象言語の適応性能に影響を及ぼすことを示す。
- 参考スコア(独自算出の注目度): 76.11409260727459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised learning (SSL) representations from massively multilingual models offer a promising solution for low-resource language speech tasks. Despite advancements, language adaptation in TTS systems remains an open problem. This paper explores the language adaptation capability of ZMM-TTS, a recent SSL-based multilingual TTS system proposed in our previous work. We conducted experiments on 12 languages using limited data with various fine-tuning configurations. We demonstrate that the similarity in phonetics between the pre-training and target languages, as well as the language category, affects the target language's adaptation performance. Additionally, we find that the fine-tuning dataset size and number of speakers influence adaptability. Surprisingly, we also observed that using paired data for fine-tuning is not always optimal compared to audio-only data. Beyond speech intelligibility, our analysis covers speaker similarity, language identification, and predicted MOS.
- Abstract(参考訳): 膨大な多言語モデルの自己教師付き学習(SSL)表現は、低リソース言語音声タスクに有望なソリューションを提供する。
進歩にもかかわらず、TSシステムにおける言語適応は未解決の問題である。
本稿では,ZMM-TTSの言語適応性について検討する。
様々な微調整構成の限られたデータを用いて12言語で実験を行った。
本研究では,事前学習言語と対象言語との音声学的な類似性が,対象言語の適応性能に影響を及ぼすことを示す。
さらに,微調整データセットのサイズや話者数も適応性に影響を与えることがわかった。
また,音声のみのデータと比較して,ペアデータによる微調整が常に最適であるとは限らないことも明らかになった。
音声の可知性以外にも、話者の類似性、言語識別、予測されたMOSについても分析を行った。
関連論文リスト
- Towards Building an End-to-End Multilingual Automatic Lyrics Transcription Model [14.39119862985503]
利用可能なデータセットを用いた多言語ALTシステムの構築を目指している。
英語のALTに有効であることが証明されたアーキテクチャにヒントを得て,これらの手法を多言語シナリオに適用する。
単言語モデルと比較して,多言語モデルの性能を評価する。
論文 参考訳(メタデータ) (2024-06-25T15:02:32Z) - The Interpreter Understands Your Meaning: End-to-end Spoken Language
Understanding Aided by Speech Translation [13.352795145385645]
音声翻訳(ST)は、エンドツーエンドの音声言語理解のために、音声モデルを事前訓練する良い方法である。
我々は,本モデルが単言語および多言語意図分類に基づくベースラインよりも高い性能を達成することを示す。
また、音声要約のための新しいベンチマークデータセットを作成し、低リソース/ゼロショットを英語からフランス語またはスペイン語に転送する。
論文 参考訳(メタデータ) (2023-05-16T17:53:03Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
言語横断的な自己監督型視覚表現学習は、ここ数年、研究トピックとして成長している。
我々は最近提案したRAVEn(Raw Audio-Visual Speechs)フレームワークを用いて,未ラベルデータを用いた音声-視覚モデルの事前学習を行う。
1)データ量が多いマルチ言語モデルはモノリンガルモデルよりも優れているが、データの量を維持すると、モノリンガルモデルの性能が向上する傾向にある。
論文 参考訳(メタデータ) (2023-03-14T17:05:08Z) - Towards Building Text-To-Speech Systems for the Next Billion Users [18.290165216270452]
そこで我々は,ドラヴィダ語とインド・アーリア語に対する音響モデル,ボコーダ,補足的損失関数,訓練スケジュール,話者および言語多様性の選択について検討した。
我々は,13言語を対象としたTSモデルをトレーニングし,評価し,各言語における既存のモデルを大幅に改善するモデルを見出した。
論文 参考訳(メタデータ) (2022-11-17T13:59:34Z) - Investigating the Impact of Cross-lingual Acoustic-Phonetic Similarities
on Multilingual Speech Recognition [31.575930914290762]
言語間音響-音声の類似性を調べるために, 新たなデータ駆動手法を提案する。
ディープニューラルネットワークは、異なる音響モデルからの分布を直接的に同等の形式に変換するためのマッピングネットワークとして訓練されている。
モノリンガルに比べて8%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2022-07-07T15:55:41Z) - Few-Shot Cross-Lingual TTS Using Transferable Phoneme Embedding [55.989376102986654]
本稿では,言語間テキスト-音声間問題に対処するための移動可能な音素埋め込みフレームワークについて,数ショット設定で検討する。
本稿では,音素ベースのTSモデルと,異なる言語からの音素を学習潜在空間に投影するコードブックモジュールからなるフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-27T11:24:40Z) - Cross-lingual Low Resource Speaker Adaptation Using Phonological
Features [2.8080708404213373]
我々は、異なる言語に共通する音韻的特徴のセットに基づいて、言語に依存しないマルチスピーカモデルを訓練する。
対象話者データの32と8の発声で、対応する文献に匹敵する高い話者類似度スコアと自然性を得る。
論文 参考訳(メタデータ) (2021-11-17T12:33:42Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
マルチ話者テキスト音声(TTS)のための半教師付き学習手法を提案する。
マルチスピーカTTSモデルは、離散音声表現を備えたエンコーダデコーダフレームワークを用いて、未転写音声から学習することができる。
提案した半教師あり学習手法は,音声データの一部がうるさい場合にも有効であることがわかった。
論文 参考訳(メタデータ) (2020-05-16T15:47:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。