Fair and Efficient Distributed Edge Learning with Hybrid Multipath TCP
- URL: http://arxiv.org/abs/2211.09723v1
- Date: Thu, 3 Nov 2022 09:08:30 GMT
- Title: Fair and Efficient Distributed Edge Learning with Hybrid Multipath TCP
- Authors: Shiva Raj Pokhrel, Jinho Choi and Anwar Walid
- Abstract summary: The bottleneck of distributed edge learning over wireless has shifted from computing to communication.
Existing TCP-based data networking schemes for DEL are application-agnostic and fail to deliver adjustments according to application layer requirements.
We develop a hybrid multipath TCP (MP TCP) by combining model-based and deep reinforcement learning (DRL) based MP TCP for DEL.
- Score: 62.81300791178381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The bottleneck of distributed edge learning (DEL) over wireless has shifted
from computing to communication, primarily the aggregation-averaging (Agg-Avg)
process of DEL. The existing transmission control protocol (TCP)-based data
networking schemes for DEL are application-agnostic and fail to deliver
adjustments according to application layer requirements. As a result, they
introduce massive excess time and undesired issues such as unfairness and
stragglers. Other prior mitigation solutions have significant limitations as
they balance data flow rates from workers across paths but often incur
imbalanced backlogs when the paths exhibit variance, causing stragglers. To
facilitate a more productive DEL, we develop a hybrid multipath TCP (MPTCP) by
combining model-based and deep reinforcement learning (DRL) based MPTCP for DEL
that strives to realize quicker iteration of DEL and better fairness (by
ameliorating stragglers). Hybrid MPTCP essentially integrates two radical TCP
developments: i) successful existing model-based MPTCP control strategies and
ii) advanced emerging DRL-based techniques, and introduces a novel hybrid MPTCP
data transport for easing the communication of the Agg-Avg process. Extensive
emulation results demonstrate that the proposed hybrid MPTCP can overcome
excess time consumption and ameliorate the application layer unfairness of DEL
effectively without injecting additional inconstancy and stragglers.
Related papers
- Event-Triggered Reinforcement Learning Based Joint Resource Allocation for Ultra-Reliable Low-Latency V2X Communications [10.914558012458425]
6G-enabled vehicular networks face the challenge ensuring low-latency communication (URLLC) for delivering safety-critical information in a timely manner.
Traditional resource allocation schemes for vehicle-to-everything (V2X) communication systems rely on traditional decoding-based algorithms.
arXiv Detail & Related papers (2024-07-18T23:55:07Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Digital Twin Assisted Deep Reinforcement Learning for Online Admission
Control in Sliced Network [19.152875040151976]
We propose a digital twin (DT) accelerated DRL solution to address this issue.
A neural network-based DT is established with a customized output layer for queuing systems, trained through supervised learning, and then employed to assist the training phase of the DRL model.
Extensive simulations show that the DT-accelerated DRL improves resource utilization by over 40% compared to the directly trained state-of-the-art dueling deep Q-learning model.
arXiv Detail & Related papers (2023-10-07T09:09:19Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
Next Generation (NextG) networks are expected to support demanding internet tactile applications such as augmented reality and connected autonomous vehicles.
Data-driven approaches can improve the ability of the network to adapt to the current operating conditions.
Deep RL (DRL) has been shown to achieve good performance even in complex environments.
arXiv Detail & Related papers (2021-12-07T03:13:20Z) - Efficient Pressure: Improving efficiency for signalized intersections [24.917612761503996]
Reinforcement learning (RL) has attracted more attention to help solve the traffic signal control (TSC) problem.
Existing RL-based methods are rarely deployed considering that they are neither cost-effective in terms of computing resources nor more robust than traditional approaches.
We demonstrate how to construct an adaptive controller for TSC with less training and reduced complexity based on RL-based approach.
arXiv Detail & Related papers (2021-12-04T13:49:58Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.