Event-Triggered Reinforcement Learning Based Joint Resource Allocation for Ultra-Reliable Low-Latency V2X Communications
- URL: http://arxiv.org/abs/2407.13947v1
- Date: Thu, 18 Jul 2024 23:55:07 GMT
- Title: Event-Triggered Reinforcement Learning Based Joint Resource Allocation for Ultra-Reliable Low-Latency V2X Communications
- Authors: Nasir Khan, Sinem Coleri,
- Abstract summary: 6G-enabled vehicular networks face the challenge ensuring low-latency communication (URLLC) for delivering safety-critical information in a timely manner.
Traditional resource allocation schemes for vehicle-to-everything (V2X) communication systems rely on traditional decoding-based algorithms.
- Score: 10.914558012458425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Future 6G-enabled vehicular networks face the challenge of ensuring ultra-reliable low-latency communication (URLLC) for delivering safety-critical information in a timely manner. Existing resource allocation schemes for vehicle-to-everything (V2X) communication systems primarily rely on traditional optimization-based algorithms. However, these methods often fail to guarantee the strict reliability and latency requirements of URLLC applications in dynamic vehicular environments due to the high complexity and communication overhead of the solution methodologies. This paper proposes a novel deep reinforcement learning (DRL) based framework for the joint power and block length allocation to minimize the worst-case decoding-error probability in the finite block length (FBL) regime for a URLLC-based downlink V2X communication system. The problem is formulated as a non-convex mixed-integer nonlinear programming problem (MINLP). Initially, an algorithm grounded in optimization theory is developed based on deriving the joint convexity of the decoding error probability in the block length and transmit power variables within the region of interest. Subsequently, an efficient event-triggered DRL-based algorithm is proposed to solve the joint optimization problem. Incorporating event-triggered learning into the DRL framework enables assessing whether to initiate the DRL process, thereby reducing the number of DRL process executions while maintaining reasonable reliability performance. Simulation results demonstrate that the proposed event-triggered DRL scheme can achieve 95% of the performance of the joint optimization scheme while reducing the DRL executions by up to 24% for different network settings.
Related papers
- Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW)
The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL.
arXiv Detail & Related papers (2024-07-18T02:46:06Z) - Optimization Theory Based Deep Reinforcement Learning for Resource
Allocation in Ultra-Reliable Wireless Networked Control Systems [10.177917426690701]
This paper introduces a novel optimization theory based deep reinforcement learning (DRL) framework for the joint design of controller and communication systems.
The objective of minimum power consumption is targeted while satisfying the schedulability and rate constraints of the communication system.
arXiv Detail & Related papers (2023-11-28T15:49:29Z) - Offline Policy Optimization in RL with Variance Regularizaton [142.87345258222942]
We propose variance regularization for offline RL algorithms, using stationary distribution corrections.
We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer.
The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms.
arXiv Detail & Related papers (2022-12-29T18:25:01Z) - Fair and Efficient Distributed Edge Learning with Hybrid Multipath TCP [62.81300791178381]
The bottleneck of distributed edge learning over wireless has shifted from computing to communication.
Existing TCP-based data networking schemes for DEL are application-agnostic and fail to deliver adjustments according to application layer requirements.
We develop a hybrid multipath TCP (MP TCP) by combining model-based and deep reinforcement learning (DRL) based MP TCP for DEL.
arXiv Detail & Related papers (2022-11-03T09:08:30Z) - Proactive and AoI-aware Failure Recovery for Stateful NFV-enabled
Zero-Touch 6G Networks: Model-Free DRL Approach [0.0]
We propose a model-free deep reinforcement learning (DRL)-based proactive failure recovery framework called zero-touch PFR (ZT-PFR)
ZT-PFR is for the embedded stateful virtual network functions (VNFs) in network function virtualization (NFV) enabled networks.
arXiv Detail & Related papers (2021-02-02T21:40:35Z) - Dynamic RAN Slicing for Service-Oriented Vehicular Networks via
Constrained Learning [40.5603189901241]
We investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements.
A dynamic RAN slicing framework is presented to dynamically allocate radio spectrum and computing resource.
We show that the RAWS effectively reduces the system cost while satisfying requirements with a high probability, as compared with benchmarks.
arXiv Detail & Related papers (2020-12-03T15:08:38Z) - Hierarchical Reinforcement Learning for Relay Selection and Power
Optimization in Two-Hop Cooperative Relay Network [7.5377621697101205]
We study the outage probability minimizing problem subjected to a total transmission power constraint in a two-hop cooperative relay network.
We use reinforcement learning (RL) methods to learn strategies for relay selection and power allocation.
We propose a hierarchical reinforcement learning (HRL) framework and training algorithm.
arXiv Detail & Related papers (2020-11-10T04:47:41Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Stacked Auto Encoder Based Deep Reinforcement Learning for Online
Resource Scheduling in Large-Scale MEC Networks [44.40722828581203]
An online resource scheduling framework is proposed for minimizing the sum of weighted task latency for all the Internet of things (IoT) users.
A deep reinforcement learning (DRL) based solution is proposed, which includes the following components.
A preserved and prioritized experience replay (2p-ER) is introduced to assist the DRL to train the policy network and find the optimal offloading policy.
arXiv Detail & Related papers (2020-01-24T23:01:15Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.