Deep Reinforcement Learning for IRS Phase Shift Design in
Spatiotemporally Correlated Environments
- URL: http://arxiv.org/abs/2211.09726v1
- Date: Wed, 2 Nov 2022 22:07:36 GMT
- Title: Deep Reinforcement Learning for IRS Phase Shift Design in
Spatiotemporally Correlated Environments
- Authors: Spilios Evmorfos, Athina P. Petropulu, H. Vincent Poor
- Abstract summary: We propose a deep actor-critic algorithm that accounts for channel correlations and destination motion.
We show that, when channels aretemporally correlated, the inclusion of the SNR in the state representation with function approximation in ways that inhibit convergence.
- Score: 93.30657979626858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper studies the problem of designing the Intelligent Reflecting Surface
(IRS) phase shifters for Multiple Input Single Output (MISO) communication
systems in spatiotemporally correlated channel environments, where the
destination can move within a confined area. The objective is to maximize the
expected sum of SNRs at the receiver over infinite time horizons. The problem
formulation gives rise to a Markov Decision Process (MDP). We propose a deep
actor-critic algorithm that accounts for channel correlations and destination
motion by constructing the state representation to include the current position
of the receiver and the phase shift values and receiver positions that
correspond to a window of previous time steps. The channel variability induces
high frequency components on the spectrum of the underlying value function. We
propose the preprocessing of the critic's input with a Fourier kernel which
enables stable value learning. Finally, we investigate the use of the
destination SNR as a component of the designed MDP state, which is common
practice in previous work. We provide empirical evidence that, when the
channels are spatiotemporally correlated, the inclusion of the SNR in the state
representation interacts with function approximation in ways that inhibit
convergence.
Related papers
- Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Benchmarking Semantic Communications for Image Transmission Over MIMO Interference Channels [11.108614988357008]
We propose an interference-robust semantic communication (IRSC) scheme for general multiple-input multiple-output (MIMO) interference channels.
This scheme involves the development of transceivers based on neural networks (NNs), which integrate channel state information (CSI) either solely at the receiver or at both transmitter and receiver ends.
Experimental results demonstrate that the proposed IRSC scheme effectively learns to mitigate interference and outperforms baseline approaches.
arXiv Detail & Related papers (2024-04-10T11:40:22Z) - Joint Sparsity Pattern Learning Based Channel Estimation for Massive
MIMO-OTFS Systems [46.42375183269616]
We propose a channel estimation scheme based on joint sparsity pattern learning (JSPL) for massive multi-input multi-output (MIMO) modulation aided systems.
Both our simulation results and analysis demonstrate that the proposed channel estimation scheme achieves an improved performance over the representative state-of-the-art baseline schemes.
arXiv Detail & Related papers (2024-03-06T15:05:39Z) - Deep Learning-Based Frequency Offset Estimation [7.143765507026541]
We show the utilization of deep learning for CFO estimation by employing a residual network (ResNet) to learn and extract signal features.
In comparison to the commonly used traditional CFO estimation methods, our proposed IQ-ResNet method exhibits superior performance across various scenarios.
arXiv Detail & Related papers (2023-11-08T13:56:22Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Channel Estimation for RIS-Empowered Multi-User MISO Wireless
Communications [35.207416803526876]
We present two iterative estimation algorithms for the channels between the base station and RIS.
One is based on alternating least squares (ALS), while the other uses vector approximate message passing to iteratively reconstruct two unknown channels.
We also discuss the downlink achievable sum rate with estimated channels and different precoding schemes for the base station.
arXiv Detail & Related papers (2020-08-04T10:53:51Z) - Millimeter Wave Communications with an Intelligent Reflector:
Performance Optimization and Distributional Reinforcement Learning [119.97450366894718]
A novel framework is proposed to optimize the downlink multi-user communication of a millimeter wave base station.
A channel estimation approach is developed to measure the channel state information (CSI) in real-time.
A distributional reinforcement learning (DRL) approach is proposed to learn the optimal IR reflection and maximize the expectation of downlink capacity.
arXiv Detail & Related papers (2020-02-24T22:18:54Z) - Temporal-Spatial Neural Filter: Direction Informed End-to-End
Multi-channel Target Speech Separation [66.46123655365113]
Target speech separation refers to extracting the target speaker's speech from mixed signals.
Two main challenges are the complex acoustic environment and the real-time processing requirement.
We propose a temporal-spatial neural filter, which directly estimates the target speech waveform from multi-speaker mixture.
arXiv Detail & Related papers (2020-01-02T11:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.