論文の概要: RenderDiffusion: Image Diffusion for 3D Reconstruction, Inpainting and
Generation
- arxiv url: http://arxiv.org/abs/2211.09869v3
- Date: Tue, 6 Feb 2024 21:12:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 20:59:07.368278
- Title: RenderDiffusion: Image Diffusion for 3D Reconstruction, Inpainting and
Generation
- Title(参考訳): RenderDiffusion:3次元再構成・塗装・生成のための画像拡散
- Authors: Titas Anciukevicius, Zexiang Xu, Matthew Fisher, Paul Henderson, Hakan
Bilen, Niloy J. Mitra, Paul Guerrero
- Abstract要約: 単分子2次元観察のみを用いて学習した3次元生成と推論のための最初の拡散モデルであるRenderDiffusionを提案する。
FFHQ,AFHQ,ShapeNet,CLEVRのデータセット上でRenderDiffusionを評価し,3Dシーンの生成と2D画像からの3Dシーンの推測の競合性能を示した。
- 参考スコア(独自算出の注目度): 68.89456892463538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models currently achieve state-of-the-art performance for both
conditional and unconditional image generation. However, so far, image
diffusion models do not support tasks required for 3D understanding, such as
view-consistent 3D generation or single-view object reconstruction. In this
paper, we present RenderDiffusion, the first diffusion model for 3D generation
and inference, trained using only monocular 2D supervision. Central to our
method is a novel image denoising architecture that generates and renders an
intermediate three-dimensional representation of a scene in each denoising
step. This enforces a strong inductive structure within the diffusion process,
providing a 3D consistent representation while only requiring 2D supervision.
The resulting 3D representation can be rendered from any view. We evaluate
RenderDiffusion on FFHQ, AFHQ, ShapeNet and CLEVR datasets, showing competitive
performance for generation of 3D scenes and inference of 3D scenes from 2D
images. Additionally, our diffusion-based approach allows us to use 2D
inpainting to edit 3D scenes.
- Abstract(参考訳): 拡散モデルは現在、条件付きおよび無条件画像生成の両方において最先端の性能を達成している。
しかし、これまでの画像拡散モデルは、ビュー一貫性のある3D生成やシングルビューオブジェクト再構成のような3D理解に必要なタスクをサポートしていない。
本稿では,単分子2次元監視のみを用いてトレーニングした3次元生成と推論のための最初の拡散モデルであるRenderDiffusionを提案する。
提案手法の中心となるのは,シーンの中間的な3次元表現を生成・描画する新しい画像復調アーキテクチャである。
これは拡散過程の中で強い誘導構造を強制し、2次元の監督しか必要とせず、3次元の一貫した表現を提供する。
得られた3d表現は、任意のビューからレンダリングできる。
FFHQ,AFHQ,ShapeNet,CLEVRのデータセット上でRenderDiffusionを評価し,3Dシーンの生成と2D画像からの3Dシーンの推測の競合性能を示した。
さらに、拡散ベースのアプローチでは、2dインペインティングを使って3dシーンを編集できます。
関連論文リスト
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
単一の画像から3Dオブジェクトを生成するには、野生で撮影された未ポーズのRGB画像から、目に見えない景色の完全な3D形状とテクスチャを推定する必要がある。
3次元オブジェクト生成の最近の進歩は、物体の形状とテクスチャを再構築する技術を導入している。
本稿では, この限界に対応するために, 2次元拡散モデルと3次元拡散モデルとのギャップを埋めることを提案する。
論文 参考訳(メタデータ) (2024-10-12T10:14:11Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
本稿では,2次元拡散モデルを再学習することなく,抽出した参照オブジェクトから3次元先行を明示的に注入する,電流パイプラインを備えた新しいフレームワークSculpt3Dを提案する。
具体的には、スパース線サンプリングによるキーポイントの監督により、高品質で多様な3次元形状を保証できることを実証する。
これら2つの分離された設計は、参照オブジェクトからの3D情報を利用して、2D拡散モデルの生成品質を保ちながら、3Dオブジェクトを生成する。
論文 参考訳(メタデータ) (2024-03-14T07:39:59Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
実世界の3Dシーンの高速かつ詳細な再構築と生成を可能にする最初の拡散モデルを提案する。
まず、大きな3Dシーンを効率よく正確に表現できる新しいニューラルシーン表現であるIBプレーンを導入する。
第二に,2次元画像のみを用いて,この新たな3次元シーン表現の事前学習を行うためのデノイング拡散フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-05T19:00:45Z) - Inpaint3D: 3D Scene Content Generation using 2D Inpainting Diffusion [18.67196713834323]
本稿では、2次元拡散モデルを学習された3次元シーン表現(例えば、NeRF)に蒸留することにより、マスク付き多視点画像を用いたシーンの3次元領域の塗装手法を提案する。
我々は,この2次元拡散モデルが,スコア蒸留サンプリングとNeRF再構成損失の組み合わせを用いてNeRFを最適化する3次元多視点再構成問題において,生成前のモデルとして機能することを示す。
提案手法は,任意の3次元マスキング領域を埋めるコンテンツを生成することができるため,3次元オブジェクト補完,3次元オブジェクト置換,3次元シーン補完も同時に行うことができる。
論文 参考訳(メタデータ) (2023-12-06T19:30:04Z) - 3DStyle-Diffusion: Pursuing Fine-grained Text-driven 3D Stylization with
2D Diffusion Models [102.75875255071246]
テキスト駆動型スタイリングによる3Dコンテンツ作成は、マルチメディアとグラフィックコミュニティにとって根本的な課題となっている。
2次元拡散モデルから制御可能な外観と幾何学的ガイダンスを付加した3次元メッシュのきめ細かいスタイリングをトリガーする新しい3DStyle-Diffusionモデルを提案する。
論文 参考訳(メタデータ) (2023-11-09T15:51:27Z) - ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image
Collections [71.46546520120162]
単眼画像から動物体のような3D関節形状を推定することは、本質的に困難である。
本稿では,スパース画像コレクションから各物体の形状を再構築する自己教師型フレームワークARTIC3Dを提案する。
我々は、剛性部分変換の下で、描画された形状とテクスチャを微調整することで、現実的なアニメーションを作成する。
論文 参考訳(メタデータ) (2023-06-07T17:47:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。