論文の概要: Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior
- arxiv url: http://arxiv.org/abs/2403.09140v1
- Date: Thu, 14 Mar 2024 07:39:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 21:36:54.918444
- Title: Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior
- Title(参考訳): Sculpt3D:スパース3D先行によるマルチビュー一貫性テキスト・ツー・3D生成
- Authors: Cheng Chen, Xiaofeng Yang, Fan Yang, Chengzeng Feng, Zhoujie Fu, Chuan-Sheng Foo, Guosheng Lin, Fayao Liu,
- Abstract要約: 本稿では,2次元拡散モデルを再学習することなく,抽出した参照オブジェクトから3次元先行を明示的に注入する,電流パイプラインを備えた新しいフレームワークSculpt3Dを提案する。
具体的には、スパース線サンプリングによるキーポイントの監督により、高品質で多様な3次元形状を保証できることを実証する。
これら2つの分離された設計は、参照オブジェクトからの3D情報を利用して、2D拡散モデルの生成品質を保ちながら、3Dオブジェクトを生成する。
- 参考スコア(独自算出の注目度): 57.986512832738704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works on text-to-3d generation show that using only 2D diffusion supervision for 3D generation tends to produce results with inconsistent appearances (e.g., faces on the back view) and inaccurate shapes (e.g., animals with extra legs). Existing methods mainly address this issue by retraining diffusion models with images rendered from 3D data to ensure multi-view consistency while struggling to balance 2D generation quality with 3D consistency. In this paper, we present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model. Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach. Moreover, to ensure accurate appearances of different views, we further modulate the output of the 2D diffusion model to the correct patterns of the template views without altering the generated object's style. These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model. Extensive experiments show our method can largely improve the multi-view consistency while retaining fidelity and diversity. Our project page is available at: https://stellarcheng.github.io/Sculpt3D/.
- Abstract(参考訳): 最近のテキスト・ツー・3d生成の研究は、3次元生成に2次元拡散監督のみを用いることで、不整合な外観(例えば、背面の顔)と不正確な形状(例えば、余分な脚を持つ動物)が生じる傾向にあることを示している。
既存の手法では、3次元データからレンダリングされた画像を用いて拡散モデルを再学習し、2次元生成品質と3次元整合性のバランスを保ちながら、多視点整合性を確保する。
本稿では,2次元拡散モデルを再学習することなく,抽出した参照オブジェクトから3次元事前の明示的なインジェクションを,電流パイプラインに装備する新しいフレームワークSculpt3Dを提案する。
具体的には、スパース線サンプリングによるキーポイントの監督により、高品質で多様な3次元形状を保証できることを実証する。
さらに、異なるビューの正確な出現を保証するため、生成されたオブジェクトのスタイルを変えることなく、2次元拡散モデルの出力をテンプレートビューの正しいパターンに調整する。
これら2つの分離された設計は、参照オブジェクトからの3D情報を利用して、2D拡散モデルの生成品質を保ちながら、3Dオブジェクトを生成する。
大規模な実験により,本手法は忠実度と多様性を保ちながら,多視点整合性を大幅に向上できることが示された。
私たちのプロジェクトページは、https://stellarcheng.github.io/Sculpt3D/.com/で公開されています。
関連論文リスト
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
単一の画像から3Dオブジェクトを生成するには、野生で撮影された未ポーズのRGB画像から、目に見えない景色の完全な3D形状とテクスチャを推定する必要がある。
3次元オブジェクト生成の最近の進歩は、物体の形状とテクスチャを再構築する技術を導入している。
本稿では, この限界に対応するために, 2次元拡散モデルと3次元拡散モデルとのギャップを埋めることを提案する。
論文 参考訳(メタデータ) (2024-10-12T10:14:11Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
テキストプロンプトから高品質な3Dアセットを作成するための拡散型3D生成モデルであるDIRECT-3Dを提案する。
我々のモデルは、広範に騒々しく不整合な3D資産で直接訓練されている。
単一クラス生成とテキスト・ツー・3D生成の両方で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-06T17:58:15Z) - Retrieval-Augmented Score Distillation for Text-to-3D Generation [30.57225047257049]
テキストから3D生成における検索に基づく品質向上のための新しいフレームワークを提案する。
我々はReDreamが幾何整合性を高めて優れた品質を示すことを示すために広範な実験を行った。
論文 参考訳(メタデータ) (2024-02-05T12:50:30Z) - Sherpa3D: Boosting High-Fidelity Text-to-3D Generation via Coarse 3D
Prior [52.44678180286886]
2次元拡散モデルでは、3次元データなしで優れた一般化と豊富な詳細を実現する蒸留手法が見つかる。
提案するSherpa3Dは,高忠実度,一般化性,幾何整合性を同時に実現する新しいテキスト・ツー・3Dフレームワークである。
論文 参考訳(メタデータ) (2023-12-11T18:59:18Z) - Text-to-3D Generation with Bidirectional Diffusion using both 2D and 3D
priors [16.93758384693786]
双方向拡散(Bidirectional Diffusion、BiDiff)は、3次元と2次元の拡散プロセスの両方を組み込んだ統合フレームワークである。
我々のモデルは高品質で多種多様でスケーラブルな3D生成を実現する。
論文 参考訳(メタデータ) (2023-12-07T10:00:04Z) - SweetDreamer: Aligning Geometric Priors in 2D Diffusion for Consistent
Text-to-3D [40.088688751115214]
事前学習した拡散モデルからテキストから3D生成のための3次元世界へ2D結果を持ち上げることは本質的に不明瞭である。
昇降時の3次元形状をよく定義した拡散モデルにおける2次元幾何学的先行を整列させて整合性を向上させる。
提案手法は,人間の評価によって85%以上の一貫性を有する新しい最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-04T05:59:50Z) - EfficientDreamer: High-Fidelity and Robust 3D Creation via Orthogonal-view Diffusion Prior [59.25950280610409]
直交ビュー画像誘導を利用した高画質な3Dコンテンツ生成パイプラインを提案する。
本稿では,与えられたテキストプロンプトに基づいて4つのサブイメージからなる画像を生成する2次元拡散モデルを提案する。
また,生成した3Dコンテンツの詳細をさらに改善する3D合成ネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-25T07:39:26Z) - ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image
Collections [71.46546520120162]
単眼画像から動物体のような3D関節形状を推定することは、本質的に困難である。
本稿では,スパース画像コレクションから各物体の形状を再構築する自己教師型フレームワークARTIC3Dを提案する。
我々は、剛性部分変換の下で、描画された形状とテクスチャを微調整することで、現実的なアニメーションを作成する。
論文 参考訳(メタデータ) (2023-06-07T17:47:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。