論文の概要: Audio Anti-spoofing Using a Simple Attention Module and Joint
Optimization Based on Additive Angular Margin Loss and Meta-learning
- arxiv url: http://arxiv.org/abs/2211.09898v1
- Date: Thu, 17 Nov 2022 21:25:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 16:04:08.166506
- Title: Audio Anti-spoofing Using a Simple Attention Module and Joint
Optimization Based on Additive Angular Margin Loss and Meta-learning
- Title(参考訳): 付加的なAngularマージン損失とメタ学習に基づく単純な注意モジュールと共同最適化を用いた音声アンチスプーフィング
- Authors: Zhenyu Wang and John H.L. Hansen
- Abstract要約: 本研究では,畳み込み層における特徴写像に対する3次元の注意重みを推定するための単純な注意モジュールを提案する。
2進分類のための重み付き加法的角縁損失に基づく共同最適化手法を提案する。
提案手法は, プールEERが0.99%, min t-DCFが0.0289。
- 参考スコア(独自算出の注目度): 43.519717601587864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic speaker verification systems are vulnerable to a variety of access
threats, prompting research into the formulation of effective spoofing
detection systems to act as a gate to filter out such spoofing attacks. This
study introduces a simple attention module to infer 3-dim attention weights for
the feature map in a convolutional layer, which then optimizes an energy
function to determine each neuron's importance. With the advancement of both
voice conversion and speech synthesis technologies, unseen spoofing attacks are
constantly emerging to limit spoofing detection system performance. Here, we
propose a joint optimization approach based on the weighted additive angular
margin loss for binary classification, with a meta-learning training framework
to develop an efficient system that is robust to a wide range of spoofing
attacks for model generalization enhancement. As a result, when compared to
current state-of-the-art systems, our proposed approach delivers a competitive
result with a pooled EER of 0.99% and min t-DCF of 0.0289.
- Abstract(参考訳): 自動話者認証システムは、様々なアクセス脅威に対して脆弱であり、そのようなスプーフィング攻撃をフィルターするゲートとして機能する効果的なスプーフィング検出システムの定式化に関する研究が進められている。
本研究では、畳み込み層における特徴写像の3次元注意重みを推定するための単純な注意モジュールを導入し、各ニューロンの重要性を決定するためにエネルギー関数を最適化する。
音声変換と音声合成技術の進歩に伴い、スプーフィング検出システムの性能を制限するため、目立たないスプーフィング攻撃が絶えず発生している。
本稿では,二項分類のための重み付き加法的角縁損失に基づく共同最適化手法を提案する。メタラーニング学習フレームワークは,モデル一般化強化のための幅広いスプーフィング攻撃に頑健な,効率的なシステムを開発する。
その結果、現在の最先端システムと比較すると、本提案手法はプールEERが0.99%、min t-DCFが0.0289と競合する結果となる。
関連論文リスト
- Toward Improving Synthetic Audio Spoofing Detection Robustness via Meta-Learning and Disentangled Training With Adversarial Examples [33.445126880876415]
自動話者検証システムに到達させる代わりに、スプーフ攻撃をフィルタリングする信頼性と堅牢なスプーフ検出システムを提案する。
データ不均衡問題に対処するために重み付き加法的角縁損失が提案され、スプーフィング攻撃に対する一般化を改善するために異なるマージンが割り当てられている。
データ拡張戦略として、スプーフィング音声に知覚不能な摂動を加えて、敵の例にのみ対応する正規化統計が実行されることを保証するために、補助的なバッチ正規化を用いる。
論文 参考訳(メタデータ) (2024-08-23T19:26:54Z) - Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
侵入検知システム(IDS)は,コンピュータネットワークのセキュリティ確保において重要な役割を担っている。
本稿では,自動,効率的,堅牢なネットワーク侵入検出が可能な,新しいマルチエージェント強化学習(RL)アーキテクチャを提案する。
我々のソリューションは、新しい攻撃の追加に対応し、既存の攻撃パターンの変更に効果的に適応するように設計されたレジリエントなアーキテクチャを導入します。
論文 参考訳(メタデータ) (2024-07-08T09:18:59Z) - ConvNext Based Neural Network for Anti-Spoofing [6.047242590232868]
自動話者認証(ASV)は、実生活においてアイデンティティ認証に広く用いられている。
音声変換, 音声アルゴリズム, 記録装置の品質向上などにより, ASVシステムはスプーフ攻撃に対して脆弱である。
論文 参考訳(メタデータ) (2022-09-14T05:53:37Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - Mitigating Closed-model Adversarial Examples with Bayesian Neural
Modeling for Enhanced End-to-End Speech Recognition [18.83748866242237]
厳密で実証的な「閉モデル対逆ロバスト性」の設定に焦点を当てる。
本稿では,ベイズニューラルネットワーク(BNN)を用いた対角検出器を提案する。
検出率を+2.77から+5.42%(相対+3.03から+6.26%)に改善し、単語エラー率をLibriSpeechデータセットで5.02から7.47%に下げる。
論文 参考訳(メタデータ) (2022-02-17T09:17:58Z) - Generative Adversarial Network-Driven Detection of Adversarial Tasks in
Mobile Crowdsensing [5.675436513661266]
クラウドセンシングシステムは、不特定かつユビキタスなプロパティの上に構築されるため、さまざまな攻撃に対して脆弱である。
以前の研究では、GANベースの攻撃は実験的に設計された攻撃サンプルよりも重大な破壊力を示すことが示唆されている。
本稿では,GANモデルを統合することにより,知的に設計された不正なセンシングサービス要求を検出することを目的とする。
論文 参考訳(メタデータ) (2022-02-16T00:23:25Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
本稿では,システムの物理的特性に反する逆スプーフ信号を生成するための新しい枠組みを提案する。
トップセキュリティカンファレンスで公表された4つの異常検知器を分析した。
論文 参考訳(メタデータ) (2020-12-07T11:02:44Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
本稿では,一段検出器の検出パイプラインに対する一連の最適化手法を提案する。
効率的な歩行者検出のための単発アンカーベース検出器(SADet)を形成する。
構造的には単純だが、VGA解像度の画像に対して最先端の結果と20ドルFPSのリアルタイム速度を示す。
論文 参考訳(メタデータ) (2020-07-26T12:32:38Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。