論文の概要: ConvNext Based Neural Network for Anti-Spoofing
- arxiv url: http://arxiv.org/abs/2209.06434v2
- Date: Thu, 15 Sep 2022 02:24:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-16 11:46:12.054811
- Title: ConvNext Based Neural Network for Anti-Spoofing
- Title(参考訳): convnextベースのアンチスプーフィング用ニューラルネットワーク
- Authors: Qiaowei Ma, Jinghui Zhong, Yitao Yang, Weiheng Liu, Ying Gao and Wing
W.Y. Ng
- Abstract要約: 自動話者認証(ASV)は、実生活においてアイデンティティ認証に広く用いられている。
音声変換, 音声アルゴリズム, 記録装置の品質向上などにより, ASVシステムはスプーフ攻撃に対して脆弱である。
- 参考スコア(独自算出の注目度): 6.047242590232868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic speaker verification (ASV) has been widely used in the real life
for identity authentication. However, with the rapid development of speech
conversion, speech synthesis algorithms and the improvement of the quality of
recording devices, ASV systems are vulnerable for spoof attacks. In recent
years, there have many works about synthetic and replay speech detection,
researchers had proposed a number of anti-spoofing methods based on
hand-crafted features to improve the accuracy and robustness of synthetic and
replay speech detection system. However, using hand-crafted features rather
than raw waveform would lose certain information for anti-spoofing, which will
reduce the detection performance of the system. Inspired by the promising
performance of ConvNext in image classification tasks, we extend the ConvNext
network architecture accordingly for spoof attacks detection task and propose
an end-to-end anti-spoofing model. By integrating the extended architecture
with the channel attention block, the proposed model can focus on the most
informative sub-bands of speech representations to improve the anti-spoofing
performance. Experiments show that our proposed best single system could
achieve an equal error rate of 1.88% and 2.79% for the ASVSpoof 2019 LA
evaluation dataset and PA evaluation dataset respectively, which demonstrate
the model's capacity for anti-spoofing.
- Abstract(参考訳): 自動話者認証(ASV)は、実生活においてアイデンティティ認証に広く用いられている。
しかし, 音声変換, 音声合成アルゴリズム, 記録装置の品質向上などにより, ASVシステムはスプーフ攻撃に対して脆弱である。
近年,合成・再生音声検出に関する研究が数多く行われており,合成・再生音声検出システムの精度とロバスト性を向上させるために,手作りの特徴に基づく数多くのアンチスプーフィング手法が提案されている。
しかし、生の波形ではなく手作りの特徴を用いると、スプーフィングの特定の情報を失うため、システムの検出性能が低下する。
画像分類タスクにおけるconvnextの有望な性能に触発されて,spoof攻撃検出タスクに応じてconvnextネットワークアーキテクチャを拡張し,エンドツーエンドのアンチスプーフィングモデルを提案する。
拡張されたアーキテクチャをチャネルアテンションブロックと統合することにより,提案手法は音声表現の最も有益なサブバンドに着目し,スプーフィング防止性能を向上させる。
実験により,提案する最良単一システムは,2019年la評価データセットとpa評価データセットにおいて,それぞれ1.88%と2.79%の誤差率を達成できることが分かった。
関連論文リスト
- Toward Improving Synthetic Audio Spoofing Detection Robustness via Meta-Learning and Disentangled Training With Adversarial Examples [33.445126880876415]
自動話者検証システムに到達させる代わりに、スプーフ攻撃をフィルタリングする信頼性と堅牢なスプーフ検出システムを提案する。
データ不均衡問題に対処するために重み付き加法的角縁損失が提案され、スプーフィング攻撃に対する一般化を改善するために異なるマージンが割り当てられている。
データ拡張戦略として、スプーフィング音声に知覚不能な摂動を加えて、敵の例にのみ対応する正規化統計が実行されることを保証するために、補助的なバッチ正規化を用いる。
論文 参考訳(メタデータ) (2024-08-23T19:26:54Z) - Audio Anti-spoofing Using a Simple Attention Module and Joint
Optimization Based on Additive Angular Margin Loss and Meta-learning [43.519717601587864]
本研究では,畳み込み層における特徴写像に対する3次元の注意重みを推定するための単純な注意モジュールを提案する。
2進分類のための重み付き加法的角縁損失に基づく共同最適化手法を提案する。
提案手法は, プールEERが0.99%, min t-DCFが0.0289。
論文 参考訳(メタデータ) (2022-11-17T21:25:29Z) - Anti-Spoofing Using Transfer Learning with Variational Information
Bottleneck [6.918364447822298]
本稿では,音声のアンチ・スプーフィングタスクのための変動情報ボトルネックを持つwav2vec 2.0事前学習モデルに基づく伝達学習手法を提案する。
提案手法は,現在最先端のアンチ・スプーフィングシステムよりも優れており,未知のスプーフィングと真正の音声を区別する性能を向上させる。
論文 参考訳(メタデータ) (2022-04-04T11:08:21Z) - Mitigating Closed-model Adversarial Examples with Bayesian Neural
Modeling for Enhanced End-to-End Speech Recognition [18.83748866242237]
厳密で実証的な「閉モデル対逆ロバスト性」の設定に焦点を当てる。
本稿では,ベイズニューラルネットワーク(BNN)を用いた対角検出器を提案する。
検出率を+2.77から+5.42%(相対+3.03から+6.26%)に改善し、単語エラー率をLibriSpeechデータセットで5.02から7.47%に下げる。
論文 参考訳(メタデータ) (2022-02-17T09:17:58Z) - RW-Resnet: A Novel Speech Anti-Spoofing Model Using Raw Waveform [12.75508520935682]
本稿ではResWavegram-Resnetという新しい音声合成モデルを提案する。
RW-Resnetは他の最先端のアンチスプーフィングモデルよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-08-12T12:09:26Z) - Channel-wise Gated Res2Net: Towards Robust Detection of Synthetic Speech
Attacks [67.7648985513978]
自動話者検証(ASV)における既存のアンチスプーフィングのアプローチは、未確認攻撃に対する一般化性に欠ける。
本稿では,チャネルワイズゲーティング機構を実現するためにRes2Netを改良した新しいCG-Res2Netを提案する。
論文 参考訳(メタデータ) (2021-07-19T12:27:40Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
我々は、自動話者検証(ASV)のための敵対サンプルを見つけるために、ニューラルボコーダを採用する。
元の音声と再合成音声のASVスコアの違いは、真正と逆正のサンプルの識別に良い指標であることがわかった。
私たちのコードは、将来的な比較作業のためにオープンソースにされます。
論文 参考訳(メタデータ) (2021-07-01T08:58:16Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
この研究は、特定の攻撃アルゴリズムを知らずにASVの敵防衛を行う最初の試みの一つである。
本研究の目的は,1) 対向摂動浄化と2) 対向摂動検出の2つの視点から対向防御を行うことである。
実験の結果, 検出モジュールは, 約80%の精度で対向検体を検出することにより, ASVを効果的に遮蔽することがわかった。
論文 参考訳(メタデータ) (2021-06-01T07:10:54Z) - Aurora Guard: Reliable Face Anti-Spoofing via Mobile Lighting System [103.5604680001633]
紙写真やデジタルビデオの高解像度レンダリングリプレイに対する反偽造は、未解決の問題だ。
オーロラガード(Aurora Guard, AG)と呼ばれる, シンプルだが効果的な顔保護システムを提案する。
論文 参考訳(メタデータ) (2021-02-01T09:17:18Z) - Replay and Synthetic Speech Detection with Res2net Architecture [85.20912636149552]
既存のリプレイと合成音声検出のアプローチは、スプーフィング攻撃に対する一般化性に欠けていた。
本研究では、Res2Netと呼ばれる新しいモデル構造を活用して、アンチスプーフィング対策の一般化性を改善することを提案する。
論文 参考訳(メタデータ) (2020-10-28T14:33:42Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
本研究では,自己指導型高水準表現の堅牢性について,敵攻撃に対する防御に利用して検討する。
ASVspoof 2019データセットの実験結果は、Mockingjayによって抽出されたハイレベルな表現が、敵の例の転送可能性を妨げることを示した。
論文 参考訳(メタデータ) (2020-06-05T03:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。