論文の概要: Online Distribution Shift Detection via Recency Prediction
- arxiv url: http://arxiv.org/abs/2211.09916v4
- Date: Sat, 18 May 2024 00:29:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 01:20:28.713058
- Title: Online Distribution Shift Detection via Recency Prediction
- Title(参考訳): 信頼度予測によるオンライン配電シフト検出
- Authors: Rachel Luo, Rohan Sinha, Yixiao Sun, Ali Hindy, Shengjia Zhao, Silvio Savarese, Edward Schmerling, Marco Pavone,
- Abstract要約: 偽陽性率を保証した分布変化をオンラインで検出する手法を提案する。
我々のシステムは(確率$epsilon$で)分布シフトがない場合、誤った警告を発行する可能性は極めて低い。
従来の作業に比べて、現実的なロボティクス設定の最大11倍高速な検出を経験的に達成している。
- 参考スコア(独自算出の注目度): 43.84609690251748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When deploying modern machine learning-enabled robotic systems in high-stakes applications, detecting distribution shift is critical. However, most existing methods for detecting distribution shift are not well-suited to robotics settings, where data often arrives in a streaming fashion and may be very high-dimensional. In this work, we present an online method for detecting distribution shift with guarantees on the false positive rate - i.e., when there is no distribution shift, our system is very unlikely (with probability $< \epsilon$) to falsely issue an alert; any alerts that are issued should therefore be heeded. Our method is specifically designed for efficient detection even with high dimensional data, and it empirically achieves up to 11x faster detection on realistic robotics settings compared to prior work while maintaining a low false negative rate in practice (whenever there is a distribution shift in our experiments, our method indeed emits an alert). We demonstrate our approach in both simulation and hardware for a visual servoing task, and show that our method indeed issues an alert before a failure occurs.
- Abstract(参考訳): 最新の機械学習対応ロボットシステムをハイテイクなアプリケーションにデプロイする場合、分散シフトを検出することが重要となる。
しかし、分散シフトを検出する既存の方法のほとんどは、データがストリーミング形式で到着することが多く、非常に高次元であるロボットの設定に適していない。
本研究は, 偽陽性率を保証した分布シフトを検出するオンライン手法を提案する。つまり, 分布シフトがない場合, 警告を誤発行する確率が$<epsilon$) である可能性が極めて低い。
提案手法は,高次元データでも効率的に検出できるように設計されており,実際の偽陰性率を低く保ちつつ,従来の作業に比べて最大11倍高速なリアルロボティクス設定検出を実現している(実験で分布シフトがあった場合,実際に警告を発する)。
本稿では,視覚サーボ作業におけるシミュレーションとハードウェアの両面でのアプローチを実証し,本手法が障害発生前に警告を発していることを示す。
関連論文リスト
- TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data [0.017476232824732776]
本研究では,時間変動型オートエンコーダ(TeVAE)を提案する。
適切に設定された場合、TeVAEは異常を6%だけ間違ったタイミングでフラグし、65%の異常を検知する。
論文 参考訳(メタデータ) (2024-07-09T13:32:33Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
本稿では,潜在符号を用いた分散インスタンス分割モデルのクラスについて検討する。
ロボットピッキングへの応用として,高い精度を実現するための信頼性マスク手法を提案する。
本手法は,新たにリリースした曖昧なシーンのデータセットを含め,ロボットシステムにおける致命的なエラーを著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-05-03T05:57:29Z) - Model2Detector:Widening the Information Bottleneck for
Out-of-Distribution Detection using a Handful of Gradient Steps [12.263417500077383]
アウト・オブ・ディストリビューション検出は、長いバニラニューラルネットワークを持つ重要な機能である。
推論時間外分布検出の最近の進歩は、これらの問題のいくつかを緩和するのに役立つ。
提案手法は,一般的な画像データセットにおける検出精度において,常に最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-22T23:03:40Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
実際には、デプロイされたモデルのパフォーマンスが大幅に低下しないという、良心的なシフトを無視することは理にかなっている。
我々は,警告を発射する有効な方法は,(a)良性な警告を無視しながら有害なシフトを検知し,(b)誤報率を増大させることなく,モデル性能の連続的なモニタリングを可能にすることを論じる。
論文 参考訳(メタデータ) (2021-10-12T17:21:41Z) - Sample-Efficient Safety Assurances using Conformal Prediction [57.92013073974406]
早期警戒システムは、安全でない状況が差し迫ったときに警告を提供することができる。
安全性を確実に向上させるためには、これらの警告システムは証明可能な偽陰性率を持つべきである。
本稿では,共形予測と呼ばれる統計的推論手法とロボット・環境力学シミュレータを組み合わせたフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-28T23:00:30Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
アウト・オブ・ディストリビューション(OD)検出は、リアルタイムにアウト・オブ・ディストリビューションを検出するという課題に対処する新しいアプローチである。
本稿では,自律走行エージェントの周囲の有害な動きを頑健に検出する方法について述べる。
提案手法は,OoD因子の検出能力を一意に改善し,最先端手法よりも42%向上した。
また,本モデルでは,実験した実世界およびシミュレーション駆動データに対して,最先端技術よりも97%の精度でほぼ完璧に一般化した。
論文 参考訳(メタデータ) (2021-07-25T07:52:53Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - Real-time Out-of-distribution Detection in Learning-Enabled
Cyber-Physical Systems [1.4213973379473654]
サイバー物理システムは、現実世界の不確実性と可変性を処理できる機械学習コンポーネントを使用することで恩恵を受ける。
しかし、ディープニューラルネットワークは、システムの安全性に影響を及ぼす可能性のある、新しいタイプのハザードを導入している。
アウト・オブ・ディストリビューションデータは大きなエラーを引き起こし、安全性を損なう可能性がある。
論文 参考訳(メタデータ) (2020-01-28T17:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。