Professional Presentation and Projected Power: A Case Study of Implicit
Gender Information in English CVs
- URL: http://arxiv.org/abs/2211.09942v1
- Date: Thu, 17 Nov 2022 23:26:52 GMT
- Title: Professional Presentation and Projected Power: A Case Study of Implicit
Gender Information in English CVs
- Authors: Jinrui Yang, Sheilla Njoto, Marc Cheong, Leah Ruppanner, Lea Frermann
- Abstract summary: This paper investigates the framing of skills and background in CVs of self-identified men and women.
We introduce a data set of 1.8K authentic, English-language, CVs from the US, covering 16 occupations.
- Score: 8.947168670095326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gender discrimination in hiring is a pertinent and persistent bias in
society, and a common motivating example for exploring bias in NLP. However,
the manifestation of gendered language in application materials has received
limited attention. This paper investigates the framing of skills and background
in CVs of self-identified men and women. We introduce a data set of 1.8K
authentic, English-language, CVs from the US, covering 16 occupations, allowing
us to partially control for the confound occupation-specific gender base rates.
We find that (1) women use more verbs evoking impressions of low power; and (2)
classifiers capture gender signal even after data balancing and removal of
pronouns and named entities, and this holds for both transformer-based and
linear classifiers.
Related papers
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
This paper introduces the GenderBias-emphVL benchmark to evaluate occupation-related gender bias in Large Vision-Language Models.
Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs and state-of-the-art commercial APIs.
Our findings reveal widespread gender biases in existing LVLMs.
arXiv Detail & Related papers (2024-06-30T05:55:15Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - Gender Lost In Translation: How Bridging The Gap Between Languages
Affects Gender Bias in Zero-Shot Multilingual Translation [12.376309678270275]
bridging the gap between languages for which parallel data is not available affects gender bias in multilingual NMT.
We study the effect of encouraging language-agnostic hidden representations on models' ability to preserve gender.
We find that language-agnostic representations mitigate zero-shot models' masculine bias, and with increased levels of gender inflection in the bridge language, pivoting surpasses zero-shot translation regarding fairer gender preservation for speaker-related gender agreement.
arXiv Detail & Related papers (2023-05-26T13:51:50Z) - Efficient Gender Debiasing of Pre-trained Indic Language Models [0.0]
The gender bias present in the data on which language models are pre-trained gets reflected in the systems that use these models.
In our paper, we measure gender bias associated with occupations in Hindi language models.
Our results reflect that the bias is reduced post-introduction of our proposed mitigation techniques.
arXiv Detail & Related papers (2022-09-08T09:15:58Z) - Towards Understanding Gender-Seniority Compound Bias in Natural Language
Generation [64.65911758042914]
We investigate how seniority impacts the degree of gender bias exhibited in pretrained neural generation models.
Our results show that GPT-2 amplifies bias by considering women as junior and men as senior more often than the ground truth in both domains.
These results suggest that NLP applications built using GPT-2 may harm women in professional capacities.
arXiv Detail & Related papers (2022-05-19T20:05:02Z) - Gender Bias in Text: Labeled Datasets and Lexicons [0.30458514384586394]
There is a lack of gender bias datasets and lexicons for automating the detection of gender bias.
We provide labeled datasets and exhaustive lexicons by collecting, annotating, and augmenting relevant sentences.
The released datasets and lexicons span multiple bias subtypes including: Generic He, Generic She, Explicit Marking of Sex, and Gendered Neologisms.
arXiv Detail & Related papers (2022-01-21T12:44:51Z) - Gendered Language in Resumes and its Implications for Algorithmic Bias
in Hiring [0.0]
We train a series of models to classify the gender of the applicant.
We investigate whether it is possible to obfuscate gender from resumes.
We find that there is a significant amount of gendered information in resumes even after obfuscation.
arXiv Detail & Related papers (2021-12-16T14:26:36Z) - How True is GPT-2? An Empirical Analysis of Intersectional Occupational
Biases [50.591267188664666]
Downstream applications are at risk of inheriting biases contained in natural language models.
We analyze the occupational biases of a popular generative language model, GPT-2.
For a given job, GPT-2 reflects the societal skew of gender and ethnicity in the US, and in some cases, pulls the distribution towards gender parity.
arXiv Detail & Related papers (2021-02-08T11:10:27Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.