Gender Lost In Translation: How Bridging The Gap Between Languages
Affects Gender Bias in Zero-Shot Multilingual Translation
- URL: http://arxiv.org/abs/2305.16935v1
- Date: Fri, 26 May 2023 13:51:50 GMT
- Title: Gender Lost In Translation: How Bridging The Gap Between Languages
Affects Gender Bias in Zero-Shot Multilingual Translation
- Authors: Lena Cabrera, Jan Niehues
- Abstract summary: bridging the gap between languages for which parallel data is not available affects gender bias in multilingual NMT.
We study the effect of encouraging language-agnostic hidden representations on models' ability to preserve gender.
We find that language-agnostic representations mitigate zero-shot models' masculine bias, and with increased levels of gender inflection in the bridge language, pivoting surpasses zero-shot translation regarding fairer gender preservation for speaker-related gender agreement.
- Score: 12.376309678270275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural machine translation (NMT) models often suffer from gender biases that
harm users and society at large. In this work, we explore how bridging the gap
between languages for which parallel data is not available affects gender bias
in multilingual NMT, specifically for zero-shot directions. We evaluate
translation between grammatical gender languages which requires preserving the
inherent gender information from the source in the target language. We study
the effect of encouraging language-agnostic hidden representations on models'
ability to preserve gender and compare pivot-based and zero-shot translation
regarding the influence of the bridge language (participating in all language
pairs during training) on gender preservation. We find that language-agnostic
representations mitigate zero-shot models' masculine bias, and with increased
levels of gender inflection in the bridge language, pivoting surpasses
zero-shot translation regarding fairer gender preservation for speaker-related
gender agreement.
Related papers
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - Twists, Humps, and Pebbles: Multilingual Speech Recognition Models Exhibit Gender Performance Gaps [25.95711246919163]
Current automatic speech recognition (ASR) models are designed to be used across many languages and tasks without substantial changes.
Our study systematically evaluates the performance of two widely used multilingual ASR models on three datasets.
Our findings reveal clear gender disparities, with the advantaged group varying across languages and models.
arXiv Detail & Related papers (2024-02-28T00:24:29Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
We show that multilingual models suffer from significant gender biases just as monolingual models do.
We propose a novel benchmark, MAGBIG, intended to foster research on gender bias in multilingual models.
Our results show that not only do models exhibit strong gender biases but they also behave differently across languages.
arXiv Detail & Related papers (2024-01-29T12:02:28Z) - How To Build Competitive Multi-gender Speech Translation Models For
Controlling Speaker Gender Translation [21.125217707038356]
When translating from notional gender languages into grammatical gender languages, the generated translation requires explicit gender assignments for various words, including those referring to the speaker.
To avoid such biased and not inclusive behaviors, the gender assignment of speaker-related expressions should be guided by externally-provided metadata about the speaker's gender.
This paper aims to achieve the same results by integrating the speaker's gender metadata into a single "multi-gender" neural ST model, easier to maintain.
arXiv Detail & Related papers (2023-10-23T17:21:32Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - Target-Agnostic Gender-Aware Contrastive Learning for Mitigating Bias in
Multilingual Machine Translation [28.471506840241602]
Gender bias is a significant issue in machine translation, leading to ongoing research efforts in developing bias mitigation techniques.
We propose a bias mitigation method based on a novel approach.
Gender-Aware Contrastive Learning, GACL, encodes contextual gender information into the representations of non-explicit gender words.
arXiv Detail & Related papers (2023-05-23T12:53:39Z) - Analyzing Gender Representation in Multilingual Models [59.21915055702203]
We focus on the representation of gender distinctions as a practical case study.
We examine the extent to which the gender concept is encoded in shared subspaces across different languages.
arXiv Detail & Related papers (2022-04-20T00:13:01Z) - Neural Machine Translation Doesn't Translate Gender Coreference Right
Unless You Make It [18.148675498274866]
We propose schemes for incorporating explicit word-level gender inflection tags into Neural Machine Translation.
We find that simple existing approaches can over-generalize a gender-feature to multiple entities in a sentence.
We also propose an extension to assess translations of gender-neutral entities from English given a corresponding linguistic convention.
arXiv Detail & Related papers (2020-10-11T20:05:42Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
We study gender bias in multilingual embeddings and how it affects transfer learning for NLP applications.
We create a multilingual dataset for bias analysis and propose several ways for quantifying bias in multilingual representations.
arXiv Detail & Related papers (2020-05-02T04:34:37Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.