Enhanced Hybrid Deep Learning Approach for Botnet Attacks Detection in IoT Environment
- URL: http://arxiv.org/abs/2502.06138v1
- Date: Mon, 10 Feb 2025 03:59:27 GMT
- Title: Enhanced Hybrid Deep Learning Approach for Botnet Attacks Detection in IoT Environment
- Authors: A. Karthick kumar, S. Rathnamala, T. Vijayashanthi, M. Prabhananthakumar, Alavikunhu Panthakkan, Shadi Atalla, Wathiq Mansoor,
- Abstract summary: Botnet attacks erode trust in IoT devices and systems, undermining confidence in their security, reliability, and integrity.
Deep learning techniques have significantly enhanced the detection of botnet attacks due to their ability to analyze and learn from complex patterns in data.
This research proposed the stacking of Deep convolutional neural networks, Bi-Directional Long Short-Term Memory (Bi-LSTM), Bi-Directional Gated Recurrent Unit (Bi-GRU), and Recurrent Neural Networks (RNN) for botnet attacks detection.
- Score: 0.5384718724090648
- License:
- Abstract: Cyberattacks in an Internet of Things (IoT) environment can have significant impacts because of the interconnected nature of devices and systems. An attacker uses a network of compromised IoT devices in a botnet attack to carry out various harmful activities. Detecting botnet attacks poses several challenges because of the intricate and evolving nature of these threats. Botnet attacks erode trust in IoT devices and systems, undermining confidence in their security, reliability, and integrity. Deep learning techniques have significantly enhanced the detection of botnet attacks due to their ability to analyze and learn from complex patterns in data. This research proposed the stacking of Deep convolutional neural networks, Bi-Directional Long Short-Term Memory (Bi-LSTM), Bi-Directional Gated Recurrent Unit (Bi-GRU), and Recurrent Neural Networks (RNN) for botnet attacks detection. The UNSW-NB15 dataset is utilized for botnet attacks detection. According to experimental results, the proposed model accurately provides for the intricate patterns and features of botnet attacks, with a testing accuracy of 99.76%. The proposed model also identifies botnets with a high ROC-AUC curve value of 99.18%. A performance comparison of the proposed method with existing state-of-the-art models confirms its higher performance. The outcomes of this research could strengthen cyber security procedures and safeguard against new attacks.
Related papers
- Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
Intrusion Detection Systems (IDSs) have played a significant role in detecting and preventing cyber-attacks within traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices make it challenging to deploy conventional computing-based IDSs.
We propose a hybrid CNN architecture composed of a lightweight CNN and bidirectional LSTM (BiLSTM) to enhance the performance of IDS on the UNSW-NB15 dataset.
arXiv Detail & Related papers (2024-06-04T20:36:21Z) - Advancing DDoS Attack Detection: A Synergistic Approach Using Deep
Residual Neural Networks and Synthetic Oversampling [2.988269372716689]
We introduce an enhanced approach for DDoS attack detection by leveraging the capabilities of Deep Residual Neural Networks (ResNets)
We balance the representation of benign and malicious data points, enabling the model to better discern intricate patterns indicative of an attack.
Experimental results on a real-world dataset demonstrate that our approach achieves an accuracy of 99.98%, significantly outperforming traditional methods.
arXiv Detail & Related papers (2024-01-06T03:03:52Z) - Adversarial Explainability: Utilizing Explainable Machine Learning in Bypassing IoT Botnet Detection Systems [0.0]
Botnet detection based on machine learning has witnessed significant leaps in recent years.
adversarial attacks on machine learning-based cybersecurity systems are posing a significant threat to these solutions.
In this paper, we introduce a novel attack that utilizes machine learning model's explainability in evading detection by botnet detection systems.
arXiv Detail & Related papers (2023-09-29T18:20:05Z) - Poisoning Attacks in Federated Edge Learning for Digital Twin 6G-enabled
IoTs: An Anticipatory Study [37.97034388920841]
Federated edge learning can be essential in supporting privacy-preserving, artificial intelligence (AI)-enabled activities in digital twin 6G-enabled Internet of Things (IoT) environments.
We propose an anticipatory study for poisoning attacks in federated edge learning for digital twin 6G-enabled IoT environments.
arXiv Detail & Related papers (2023-03-21T11:12:17Z) - IoT Botnet Detection Using an Economic Deep Learning Model [0.0]
This paper proposes an economic deep learning-based model for detecting IoT botnet attacks along with different types of attacks.
The proposed model achieved higher accuracy than the state-of-the-art detection models using a smaller implementation budget and accelerating the training and detecting processes.
arXiv Detail & Related papers (2023-02-03T21:41:17Z) - Intrusion Detection in Internet of Things using Convolutional Neural
Networks [4.718295605140562]
We propose a novel solution to the intrusion attacks against IoT devices using CNNs.
The data is encoded as the convolutional operations to capture the patterns from the sensors data along time.
The experimental results show significant improvement in both true positive rate and false positive rate compared to the baseline using LSTM.
arXiv Detail & Related papers (2022-11-18T07:27:07Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
We propose a novel learning framework, RobustSense, to defend common adversarial attacks.
Our method works well on wireless human activity recognition and person identification systems.
arXiv Detail & Related papers (2022-04-04T15:06:03Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
Botnets are now a major source for many network attacks, such as DDoS attacks and spam.
In this paper, we consider the neural network design challenges of using modern deep learning techniques to learn policies for botnet detection automatically.
arXiv Detail & Related papers (2020-03-13T15:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.