Optimal service station design for traffic mitigation via genetic
algorithm and neural network
- URL: http://arxiv.org/abs/2211.10159v1
- Date: Fri, 18 Nov 2022 11:11:07 GMT
- Title: Optimal service station design for traffic mitigation via genetic
algorithm and neural network
- Authors: Carlo Cenedese, Michele Cucuzzella, Adriano Cotta Ramusino, Davide
Spalenza, John Lygeros, Antonella Ferrara
- Abstract summary: We focus on the problem of optimally designing a service station to achieve beneficial effects in terms of total traffic congestion and peak traffic reduction.
We propose a genetic algorithm based on the recently proposed CTMs, that efficiently describes the dynamics of a service station.
We leverage the algorithm to train a neural network capable of solving the same problem, avoiding implementing the CTMs.
- Score: 3.7597202216941783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper analyzes how the presence of service stations on highways affects
traffic congestion. We focus on the problem of optimally designing a service
station to achieve beneficial effects in terms of total traffic congestion and
peak traffic reduction. Microsimulators cannot be used for this task due to
their computational inefficiency. We propose a genetic algorithm based on the
recently proposed CTMs, that efficiently describes the dynamics of a service
station. Then, we leverage the algorithm to train a neural network capable of
solving the same problem, avoiding implementing the CTMs. Finally, we examine
two case studies to validate the capabilities and performance of our
algorithms. In these simulations, we use real data extracted from Dutch
highways.
Related papers
- Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
We investigate the application of energy-efficient brain-inspired machine learning models for on-board radio resource management.
For relevant workloads, spiking neural networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100$times$ as compared to the CNN-based reference platform.
arXiv Detail & Related papers (2023-08-22T03:13:57Z) - Leveraging Neo4j and deep learning for traffic congestion simulation &
optimization [0.0]
We show how traffic propagates backward in case of congestion or accident scenarios and its overall impact on other segments of the roads.
We also train a sequential RNN-LSTM (Long Short-Term Memory) deep learning model on the real-time traffic data to assess the accuracy of simulation results based on a road-specific congestion.
arXiv Detail & Related papers (2023-04-01T01:23:10Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - An ASP Framework for Efficient Urban Traffic Optimization [0.0]
This paper presents a framework which allows to efficiently simulate and optimize traffic flow in a large roads' network with hundreds of vehicles.
The framework leverages on an Answer Set Programming (ASP) encoding to formally describe the movements of vehicles inside a network.
It is then possible to optimize the routes of vehicles inside the network to reduce a range of relevant metrics.
arXiv Detail & Related papers (2022-08-05T10:50:38Z) - Dynamic Origin-Destination Matrix Estimation in Urban Traffic Networks [0.05735035463793007]
We model the problem as a bi-level optimization problem.
In the inner level, given a tentative travel demand, we solve a dynamic traffic assignment problem to decide the routing of the users between their origins and destinations.
In the outer level, we adjust the number of trips and their origins and destinations, aiming at minimizing the discrepancy between the counters generated in the inner level and the given vehicle counts measured by sensors in the traffic network.
arXiv Detail & Related papers (2022-01-31T21:33:46Z) - Neural Optimal Transport [82.2689844201373]
We present a novel neural-networks-based algorithm to compute optimal transport maps and plans for strong and weak transport costs.
We prove that neural networks are universal approximators of transport plans between probability distributions.
arXiv Detail & Related papers (2022-01-28T16:24:13Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Learning from Images: Proactive Caching with Parallel Convolutional
Neural Networks [94.85780721466816]
A novel framework for proactive caching is proposed in this paper.
It combines model-based optimization with data-driven techniques by transforming an optimization problem into a grayscale image.
Numerical results show that the proposed scheme can reduce 71.6% computation time with only 0.8% additional performance cost.
arXiv Detail & Related papers (2021-08-15T21:32:47Z) - Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2
Benchmark [133.46066694893318]
We evaluate the performance of neural network-based solvers for optimal transport.
We find that existing solvers do not recover optimal transport maps even though they perform well in downstream tasks.
arXiv Detail & Related papers (2021-06-03T15:59:28Z) - Surrogate-assisted cooperative signal optimization for large-scale
traffic networks [6.223837701805064]
This study proposes a surrogate-assisted cooperative signal optimization (SCSO) method.
By taking Newman fast algorithm, radial basis function modified estimation of distribution algorithm as decomposer, surrogate model and, respectively, this study develops a concrete SCSO algorithm.
To evaluate its effectiveness and efficiency, a large-scale traffic network involving crossroads and T-junctions is generated based on a real traffic network.
arXiv Detail & Related papers (2021-03-03T01:03:57Z) - Computation Offloading in Heterogeneous Vehicular Edge Networks: On-line
and Off-policy Bandit Solutions [30.606518785629046]
In a fast-varying vehicular environment, the latency in offloading arises as a result of network congestion.
We propose an on-line algorithm and an off-policy learning algorithm based on bandit theory.
We show that the proposed solutions adapt to the traffic changes of the network by selecting the least congested network.
arXiv Detail & Related papers (2020-08-14T11:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.