Surrogate-assisted cooperative signal optimization for large-scale
traffic networks
- URL: http://arxiv.org/abs/2103.02107v1
- Date: Wed, 3 Mar 2021 01:03:57 GMT
- Title: Surrogate-assisted cooperative signal optimization for large-scale
traffic networks
- Authors: Yongsheng Liang, Zhigang Ren, Lin Wang, Hanqing Liu, Wenhao Du
- Abstract summary: This study proposes a surrogate-assisted cooperative signal optimization (SCSO) method.
By taking Newman fast algorithm, radial basis function modified estimation of distribution algorithm as decomposer, surrogate model and, respectively, this study develops a concrete SCSO algorithm.
To evaluate its effectiveness and efficiency, a large-scale traffic network involving crossroads and T-junctions is generated based on a real traffic network.
- Score: 6.223837701805064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reasonable setting of traffic signals can be very helpful in alleviating
congestion in urban traffic networks. Meta-heuristic optimization algorithms
have proved themselves to be able to find high-quality signal timing plans.
However, they generally suffer from performance deterioration when solving
large-scale traffic signal optimization problems due to the huge search space
and limited computational budget. Directing against this issue, this study
proposes a surrogate-assisted cooperative signal optimization (SCSO) method.
Different from existing methods that directly deal with the entire traffic
network, SCSO first decomposes it into a set of tractable sub-networks, and
then achieves signal setting by cooperatively optimizing these sub-networks
with a surrogate-assisted optimizer. The decomposition operation significantly
narrows the search space of the whole traffic network, and the
surrogate-assisted optimizer greatly lowers the computational burden by
reducing the number of expensive traffic simulations. By taking Newman fast
algorithm, radial basis function and a modified estimation of distribution
algorithm as decomposer, surrogate model and optimizer, respectively, this
study develops a concrete SCSO algorithm. To evaluate its effectiveness and
efficiency, a large-scale traffic network involving crossroads and T-junctions
is generated based on a real traffic network. Comparison with several existing
meta-heuristic algorithms specially designed for traffic signal optimization
demonstrates the superiority of SCSO in reducing the average delay time of
vehicles.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
This paper explores the use of Reinforcement Learning to enhance traffic signal operations at intersections.
We introduce two RL-based algorithms: a turn-based agent, which dynamically prioritizes traffic signals based on real-time queue lengths, and a time-based agent, which adjusts signal phase durations according to traffic conditions.
Simulation results demonstrate that both RL algorithms significantly outperform conventional traffic signal control systems.
arXiv Detail & Related papers (2024-08-28T12:35:56Z) - Joint Optimization of Traffic Signal Control and Vehicle Routing in
Signalized Road Networks using Multi-Agent Deep Reinforcement Learning [19.024527400852968]
We propose a joint optimization approach for traffic signal control and vehicle routing in signalized road networks.
The objective is to enhance network performance by simultaneously controlling signal timings and route choices using Multi-Agent Deep Reinforcement Learning (MADRL)
Our work is the first to utilize MADRL in determining the optimal joint policy for signal control and vehicle routing.
arXiv Detail & Related papers (2023-10-16T22:10:47Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer
Optimization Framework [47.57576667752444]
We jointly optimize the flow-split distribution, congestion control and scheduling (JFCS) to enable an intelligent steering application in open RAN (O-RAN)
Our main contributions are three-fold: i) we propose the novel JFCS framework to efficiently and adaptively direct traffic to appropriate radio units; ii) we develop low-complexity algorithms based on the reinforcement learning, inner approximation and bisection search methods to effectively solve the JFCS problem in different time scales; and iv) the rigorous theoretical performance results are analyzed to show that there exists a scaling factor to improve the tradeoff between delay and utility-optimization
arXiv Detail & Related papers (2023-02-06T11:37:06Z) - Teal: Learning-Accelerated Optimization of WAN Traffic Engineering [68.7863363109948]
We present Teal, a learning-based TE algorithm that leverages the parallel processing power of GPUs to accelerate TE control.
To reduce the problem scale and make learning tractable, Teal employs a multi-agent reinforcement learning (RL) algorithm to independently allocate each traffic demand.
Compared with other TE acceleration schemes, Teal satisfies 6--32% more traffic demand and yields 197--625x speedups.
arXiv Detail & Related papers (2022-10-25T04:46:30Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Fast and computationally efficient generative adversarial network
algorithm for unmanned aerial vehicle-based network coverage optimization [1.2853186701496802]
The challenge of dynamic traffic demand in mobile networks is tackled by moving cells based on unmanned aerial vehicles.
Considering the tremendous potential of unmanned aerial vehicles in the future, we propose a new algorithm for coverage optimization.
The proposed algorithm is implemented based on a conditional generative adversarial neural network, with a unique multilayer sum-pooling loss function.
arXiv Detail & Related papers (2022-03-25T12:13:21Z) - Boosted Genetic Algorithm using Machine Learning for traffic control
optimization [4.642759477873937]
This paper presents a novel methodology for optimizing the traffic signal timings in signalized urban intersections.
With the purpose of producing fast and reliable decisions, we combine the fast running Machine Learning (ML) algorithms and the reliable Genetic Algorithms (GA)
We show that the new BGA-ML is much faster than the original GA algorithm and can be successfully applied under non-recurrent incident conditions.
arXiv Detail & Related papers (2021-03-11T00:39:18Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
This paper studies the problem of the trajectory design for a group of energyconstrained drones operating in dynamic wireless network environments.
A value based reinforcement learning (VDRL) solution and a metatraining mechanism is proposed.
arXiv Detail & Related papers (2020-12-06T01:30:12Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.