論文の概要: TensAIR: Real-Time Training of Neural Networks from Data-streams
- arxiv url: http://arxiv.org/abs/2211.10280v2
- Date: Thu, 18 Apr 2024 15:07:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 14:48:42.440709
- Title: TensAIR: Real-Time Training of Neural Networks from Data-streams
- Title(参考訳): TensAIR: データストリームからのニューラルネットワークのリアルタイムトレーニング
- Authors: Mauro D. L. Tosi, Vinu E. Venugopal, Martin Theobald,
- Abstract要約: 本稿では,ANNをリアルタイムにトレーニングする最初のOLシステムであるTensAIRについて述べる。
TensAIRは、分散化および非同期アーキテクチャを使用してANNモデルをトレーニングすることで、優れたパフォーマンスとスケーラビリティを実現する。
我々は、(1)ネットワークにデプロイされたワーカノードの数、(2)データバッチが到着するスループットの観点から、TensAIRがほぼ線形なスケールアウト性能を達成することを実証的に実証した。
- 参考スコア(独自算出の注目度): 1.409180142531996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online learning (OL) from data streams is an emerging area of research that encompasses numerous challenges from stream processing, machine learning, and networking. Stream-processing platforms, such as Apache Kafka and Flink, have basic extensions for the training of Artificial Neural Networks (ANNs) in a stream-processing pipeline. However, these extensions were not designed to train ANNs in real-time, and they suffer from performance and scalability issues when doing so. This paper presents TensAIR, the first OL system for training ANNs in real time. TensAIR achieves remarkable performance and scalability by using a decentralized and asynchronous architecture to train ANN models (either freshly initialized or pre-trained) via DASGD (decentralized and asynchronous stochastic gradient descent). We empirically demonstrate that TensAIR achieves a nearly linear scale-out performance in terms of (1) the number of worker nodes deployed in the network, and (2) the throughput at which the data batches arrive at the dataflow operators. We depict the versatility of TensAIR by investigating both sparse (word embedding) and dense (image classification) use cases, for which TensAIR achieved from 6 to 116 times higher sustainable throughput rates than state-of-the-art systems for training ANN in a stream-processing pipeline.
- Abstract(参考訳): データストリームからのオンライン学習(OL)は、ストリーム処理、機械学習、ネットワークといった多くの課題を含む、新たな研究分野である。
Apache KafkaやFlinkといったストリーム処理プラットフォームは、ストリーム処理パイプラインでArtificial Neural Networks(ANN)をトレーニングするための基本的な拡張を備えている。
しかし、これらの拡張はリアルタイムでANNをトレーニングするために設計されておらず、パフォーマンスやスケーラビリティの問題に悩まされている。
本稿では,ANNをリアルタイムにトレーニングする最初のOLシステムであるTensAIRについて述べる。
TensAIRは、分散および非同期アーキテクチャを使用して、DASGD(分散および非同期確率勾配勾配)を介してANNモデルをトレーニング(新しく初期化または事前訓練)することにより、顕著なパフォーマンスとスケーラビリティを実現する。
我々は,(1)ネットワーク上に展開されるワーカノードの数,(2)データバッチがデータフロー演算子に届くスループットの観点から,TensAIRがほぼ線形なスケールアウト性能を達成することを実証的に実証した。
ストリーム処理パイプラインにおけるANNのトレーニングシステムに比べて,TensAIRが持続的スループット率を6~116倍に向上した,スパース(単語埋め込み)と密集(画像分類)の両方のユースケースを調査して,TensAIRの汎用性について述べる。
関連論文リスト
- Estimating Post-Synaptic Effects for Online Training of Feed-Forward
SNNs [0.27016900604393124]
スパイクニューラルネットワーク(SNN)におけるオンライン学習の実現は、イベントベースのモデルを開発する上で重要なステップである。
本稿では, フィードフォワードSNNのトレーニングのためのOTPE(Online Training with Postsynaptic Estimates)を提案する。
本研究では, 時間的効果の新たな近似法を用いて, マルチ層ネットワークのスケーリング改善を示す。
論文 参考訳(メタデータ) (2023-11-07T16:53:39Z) - Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
本稿では,大規模な空間問題に対する畳み込みニューラルネットワーク(CNN)の効率的なトレーニングのための新しいフレームワークを提案する。
このような信号の小さなウィンドウで訓練されたCNNは、再学習することなく、はるかに大きなウィンドウでほぼ性能を発揮することを示す。
以上の結果から,CNNは10人未満の訓練を受けた後,数百人のエージェントによる問題に対処できることが示唆された。
論文 参考訳(メタデータ) (2023-07-21T13:51:45Z) - Large Deviations for Accelerating Neural Networks Training [5.864710987890994]
LAD改良反復訓練(LIIT)は,大規模な逸脱原理を用いたANNのための新しい訓練手法である。
LIITアプローチでは、LAD異常スコアに基づくサンプリング戦略を用いて、MTS(Modified Training Sample)を生成し、反復的に更新する。
MTSサンプルは、各クラスにおける観察のほとんどを異常に含めることで、トレーニングデータをうまく表現するように設計されている。
論文 参考訳(メタデータ) (2023-03-02T04:14:05Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
スパイキングニューラルネットワーク(SNN)は、前者よりも生物学的に可塑性でエネルギー効率が高いことが示されている。
本稿では,局所タンデム学習(Local Tandem Learning, LTL)と呼ばれる一般化学習規則を提案する。
CIFAR-10データセット上の5つのトレーニングエポック内に高速なネットワーク収束を示すとともに,計算複雑性が低い。
論文 参考訳(メタデータ) (2022-10-10T10:05:00Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされたエネルギー効率のモデルである。
近年のトレーニング手法の進歩により、レイテンシの低い大規模タスクにおいて、ディープSNNを成功させることができた。
本稿では,BPTT から派生した SNN の時間的学習(OTTT)によるオンライントレーニングを提案する。
論文 参考訳(メタデータ) (2022-10-09T07:47:56Z) - Federated Dynamic Sparse Training: Computing Less, Communicating Less,
Yet Learning Better [88.28293442298015]
Federated Learning (FL)は、クラウドからリソース制限されたエッジデバイスへの機械学習ワークロードの分散を可能にする。
我々は、FedDST(Federated Dynamic Sparse Training)と呼ばれる新しいFLフレームワークを開発し、実装し、実験的に検証する。
FedDSTは、ターゲットのフルネットワークからスパースサブネットワークを抽出し、訓練する動的プロセスである。
論文 参考訳(メタデータ) (2021-12-18T02:26:38Z) - Going Deeper With Directly-Trained Larger Spiking Neural Networks [20.40894876501739]
スパイキングニューラルネットワーク(SNN)は、バイオユースブルな情報とイベント駆動信号処理のためのコーディングを約束している。
しかし、SNNのユニークな動作モードにより、従来のネットワークよりもトレーニングが困難になる。
CIF依存型バッチ正規化法(tpladBN)を提案する。
論文 参考訳(メタデータ) (2020-10-29T07:15:52Z) - On the performance of deep learning models for time series
classification in streaming [0.0]
この研究は、データストリーミング分類のための様々なタイプのディープアーキテクチャのパフォーマンスを評価することである。
複数の時系列データセット上で,多層パーセプトロン,リカレント,畳み込み,時間的畳み込みニューラルネットワークなどのモデルを評価する。
論文 参考訳(メタデータ) (2020-03-05T11:41:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。