論文の概要: I saw, I conceived, I concluded: Progressive Concepts as Bottlenecks
- arxiv url: http://arxiv.org/abs/2211.10630v1
- Date: Sat, 19 Nov 2022 09:31:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 17:54:11.780344
- Title: I saw, I conceived, I concluded: Progressive Concepts as Bottlenecks
- Title(参考訳): ボトルネックとしての進歩的概念(Progressive Concepts as Bottlenecks)
- Authors: Manxi Lin, Aasa Feragen, Zahra Bashir, Martin Gr{\o}nneb{\ae}k
Tolsgaard, Anders Nymark Christensen
- Abstract要約: 概念ボトルネックモデル(CBM)は、予測中間概念の修正による推論時の説明可能性と介入を提供する。
これにより、CBMは高い意思決定に魅力的なものとなる。
胎児超音波検査の品質評価を,医療におけるCBM意思決定支援の現実的ユースケースとして捉えた。
- 参考スコア(独自算出の注目度): 2.9398911304923447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concept bottleneck models (CBMs) include a bottleneck of human-interpretable
concepts providing explainability and intervention during inference by
correcting the predicted, intermediate concepts. This makes CBMs attractive for
high-stakes decision-making. In this paper, we take the quality assessment of
fetal ultrasound scans as a real-life use case for CBM decision support in
healthcare. For this case, simple binary concepts are not sufficiently
reliable, as they are mapped directly from images of highly variable quality,
for which variable model calibration might lead to unstable binarized concepts.
Moreover, scalar concepts do not provide the intuitive spatial feedback
requested by users.
To address this, we design a hierarchical CBM imitating the sequential expert
decision-making process of "seeing", "conceiving" and "concluding". Our model
first passes through a layer of visual, segmentation-based concepts, and next a
second layer of property concepts directly associated with the decision-making
task. We note that experts can intervene on both the visual and property
concepts during inference. Additionally, we increase the bottleneck capacity by
considering task-relevant concept interaction.
Our application of ultrasound scan quality assessment is challenging, as it
relies on balancing the (often poor) image quality against an assessment of the
visibility and geometric properties of standardized image content. Our
validation shows that -- in contrast with previous CBM models -- our CBM models
actually outperform equivalent concept-free models in terms of predictive
performance. Moreover, we illustrate how interventions can further improve our
performance over the state-of-the-art.
- Abstract(参考訳): 概念ボトルネックモデル(CBM)は、予測された中間概念の修正によって推論中に説明可能性と介入を提供する人間解釈可能な概念のボトルネックを含む。
これにより、cbmは高リスク意思決定に魅力的である。
本稿では, 胎児超音波検査の品質評価を, 医療におけるcbm決定支援のユースケースとして活用する。
この場合、単純なバイナリの概念は、不安定な二元化概念につながる可能性のある、非常に可変な品質の画像から直接マッピングされるため、十分に信頼できない。
さらに、スカラーの概念は、ユーザーが要求する直感的な空間的フィードバックを提供しない。
これに対処するために,我々は,"見る","想像する","結論付ける"という,逐次的専門家意思決定プロセスを模倣した階層型cbmを設計した。
私たちのモデルはまず、ビジュアルなセグメンテーションベースの概念の層を通過し、次に、意思決定タスクに直接関連するプロパティ概念の2番目の層を通過します。
専門家は推論中に視覚的概念とプロパティの概念の両方に介入できる。
さらに,タスク関連概念の相互作用を考慮し,ボトルネック容量を増加させる。
超音波スキャン品質評価の応用は、標準化された画像コンテンツの視認性と幾何学的特性の評価と(しばしば貧弱な)画像品質のバランスに依存するため、困難である。
我々の検証によると、これまでのcbmモデルとは対照的に、cbmモデルは予測性能の点で同等のコンセプトフリーモデルよりも優れています。
さらに、介入によって最先端のパフォーマンスがさらに向上することを示す。
関連論文リスト
- On the Fairness, Diversity and Reliability of Text-to-Image Generative Models [49.60774626839712]
マルチモーダル生成モデルは 彼らの公正さ、信頼性、そして誤用の可能性について 批判的な議論を呼んだ
組込み空間における摂動に対する応答を通じてモデルの信頼性を評価するための評価フレームワークを提案する。
本手法は, 信頼できない, バイアス注入されたモデルを検出し, バイアス前駆体の検索を行うための基礎となる。
論文 参考訳(メタデータ) (2024-11-21T09:46:55Z) - How to Continually Adapt Text-to-Image Diffusion Models for Flexible Customization? [91.49559116493414]
本稿では,CIDM(Concept-Incremental Text-to-image Diffusion Model)を提案する。
破滅的な忘れと概念の無視を解決し、新しいカスタマイズタスクを概念的な方法で学習する。
実験により、CIDMが既存のカスタム拡散モデルを上回ることが確認された。
論文 参考訳(メタデータ) (2024-10-23T06:47:29Z) - EQ-CBM: A Probabilistic Concept Bottleneck with Energy-based Models and Quantized Vectors [4.481898130085069]
概念ボトルネックモデル(CBM)は、人間の理解可能な概念を活用して解釈可能性を高める効果的なアプローチとして注目されている。
既存のCBMは、決定論的概念の符号化と一貫性のない概念への依存によって問題に直面し、不正確な結果となった。
本稿では,確率論的概念エンコーディングによりCBMを強化する新しいフレームワークであるEQ-CBMを提案する。
論文 参考訳(メタデータ) (2024-09-22T23:43:45Z) - Safeguard Text-to-Image Diffusion Models with Human Feedback Inversion [51.931083971448885]
本稿では,Human Feedback Inversion (HFI) というフレームワークを提案する。
実験の結果,画像品質を維持しながら,好ましくないコンテンツ生成を著しく削減し,公的な領域におけるAIの倫理的展開に寄与することが示された。
論文 参考訳(メタデータ) (2024-07-17T05:21:41Z) - Stochastic Concept Bottleneck Models [8.391254800873599]
概念ボトルネックモデル(CBM)は、人間の理解可能な概念に基づいて最終的な予測を行う有望な解釈可能な手法として登場した。
本稿では,概念の依存関係をモデル化する新しいアプローチであるConcept Bottleneck Models (SCBM)を提案する。
単一概念の介入はすべての関係する概念に影響を与え、介入の有効性を向上させる。
論文 参考訳(メタデータ) (2024-06-27T15:38:37Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - Incremental Residual Concept Bottleneck Models [29.388549499546556]
Concept Bottleneck Models (CBM) は、ディープニューラルネットワークによって抽出されたブラックボックスの視覚表現を、解釈可能な概念のセットにマッピングする。
本稿では,概念完全性の課題を解決するために,インクリメンタル・Residual Concept Bottleneck Model (Res-CBM)を提案する。
提案手法は,任意のCBMの性能向上を目的としたポストホック処理法として,ユーザ定義の概念バンクに適用できる。
論文 参考訳(メタデータ) (2024-04-13T12:02:19Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
大規模拡散モデルから安全でない概念を排除するために,分離可能なマルチコンセプト消去器(SepME)を提案する。
後者は最適化可能なモデルウェイトを分離し、各ウェイトインクリメントは特定の概念の消去に対応する。
広範囲にわたる実験は, 概念の排除, モデル性能の保存, 各種概念の消去・回復における柔軟性の確保に, アプローチの有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-03T11:10:57Z) - Auxiliary Losses for Learning Generalizable Concept-based Models [5.4066453042367435]
コンセプト・ボトルネック・モデル (Concept Bottleneck Models, CBM) は導入以来人気を集めている。
CBMは基本的に、モデルの潜在空間を人間に理解可能な高レベルな概念に制限する。
本稿では,協調型コンセプション・ボトルネックモデル(coop-CBM)を提案し,性能トレードオフを克服する。
論文 参考訳(メタデータ) (2023-11-18T15:50:07Z) - Dynamic Clue Bottlenecks: Towards Interpretable-by-Design Visual Question Answering [58.64831511644917]
本稿では, モデル決定を中間的人間法的な説明に分解する設計モデルを提案する。
我々は、我々の本質的に解釈可能なシステムは、推論に焦点をあてた質問において、同等のブラックボックスシステムよりも4.64%改善できることを示した。
論文 参考訳(メタデータ) (2023-05-24T08:33:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。