Deep Smart Contract Intent Detection
- URL: http://arxiv.org/abs/2211.10724v1
- Date: Sat, 19 Nov 2022 15:40:26 GMT
- Title: Deep Smart Contract Intent Detection
- Authors: Youwei Huang, Tao Zhang, Sen Fang, Youshuai Tan
- Abstract summary: We propose a novel deep learning-based approach, SmartIntentNN, to conduct automated smart contract intent detection.
SmartIntentNN consists of three primary parts: a pre-trained sentence encoder to generate the contextual representations of smart contracts, a K-means clustering method to highlight intent-related representations, and a bidirectional LSTM-based (long-short term memory) multi-label classification network to predict the intents in smart contracts.
Experiments show that SmartIntentNN outperforms all baselines by up to 0.8212 in terms of the f1-score metric.
- Score: 2.2313164168600372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, security activities in smart contracts concentrate on vulnerability
detection. Despite early success, we find that developers' intent to write
smart contracts is a more noteworthy security concern because smart contracts
with malicious intent have caused significant users' financial loss.
Unfortunately, current approaches to identify the aforementioned malicious
smart contracts rely on smart contract security audits, which entail huge
manpower consumption and financial expenditure. To resolve this issue, we
propose a novel deep learning-based approach, SmartIntentNN, to conduct
automated smart contract intent detection. SmartIntentNN consists of three
primary parts: a pre-trained sentence encoder to generate the contextual
representations of smart contracts, a K-means clustering method to highlight
intent-related representations, and a bidirectional LSTM-based (long-short term
memory) multi-label classification network to predict the intents in smart
contracts. To evaluate the performance of SmartIntentNN, we collect more than
40,000 real smart contracts and perform a series of comparison experiments with
our selected baseline approaches. The experimental results demonstrate that
SmartIntentNN outperforms all baselines by up to 0.8212 in terms of the
f1-score metric.
Related papers
- Malicious Code Detection in Smart Contracts via Opcode Vectorization [0.8225825738565354]
Security problems of smart contracts become increasingly prominent.
The existence of malicious codes may lead to the loss of user assets and system crash.
In this paper, a simple study is carried out on malicious code detection of intelligent contracts based on machine learning.
arXiv Detail & Related papers (2025-04-17T07:51:48Z) - Exact Certification of (Graph) Neural Networks Against Label Poisoning [50.87615167799367]
We introduce an exact certification method for label flipping in Graph Neural Networks (GNNs)
We apply our method to certify a broad range of GNN architectures in node classification tasks.
Our work presents the first exact certificate to a poisoning attack ever derived for neural networks.
arXiv Detail & Related papers (2024-11-30T17:05:12Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
We propose a theoretical framework for aligning economic interests of different stakeholders in the online learning problems through contract design.
For the planning problem, we design an efficient dynamic programming algorithm to determine the optimal contracts against the far-sighted agent.
For the learning problem, we introduce a generic design of no-regret learning algorithms to untangle the challenges from robust design of contracts to the balance of exploration and exploitation.
arXiv Detail & Related papers (2024-07-01T16:53:00Z) - Improving Smart Contract Security with Contrastive Learning-based Vulnerability Detection [8.121484960948303]
We propose Contrastive Learning Enhanced Automated Recognition Approach for Smart Contract Vulnerabilities, named Clear.
In particular, Clear employs a contrastive learning (CL) model to capture the fine-grained correlation information among contracts.
We show that Clear achieves optimal performance over all baseline methods; (2) 9.73%-39.99% higher F1-score than existing deep learning methods.
arXiv Detail & Related papers (2024-04-27T09:13:25Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars.
Various tools have been developed to detect and mitigate vulnerabilities in smart contracts.
This study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice.
arXiv Detail & Related papers (2023-12-27T11:26:26Z) - Enhancing Smart Contract Security Analysis with Execution Property Graphs [48.31617821205042]
We introduce Clue, a dynamic analysis framework specifically designed for a runtime virtual machine.
Clue captures critical information during contract executions, employing a novel graph-based representation, the Execution Property Graph.
evaluation results reveal Clue's superior performance with high true positive rates and low false positive rates, outperforming state-of-the-art tools.
arXiv Detail & Related papers (2023-05-23T13:16:42Z) - HyMo: Vulnerability Detection in Smart Contracts using a Novel
Multi-Modal Hybrid Model [1.16095700765361]
Existing analysis techniques are capable of identifying a large number of smart contract security flaws, but they rely too much on rigid criteria established by specialists.
We propose HyMo as a multi-modal hybrid deep learning model, which intelligently considers various input representations to consider multimodality.
We show that our hybrid HyMo model has excellent smart contract vulnerability detection performance.
arXiv Detail & Related papers (2023-04-25T19:16:21Z) - An Automated Vulnerability Detection Framework for Smart Contracts [18.758795474791427]
We propose a framework to automatically detect vulnerabilities in smart contracts on the blockchain.
More specifically, first, we utilize novel feature vector generation techniques from bytecode of smart contract.
Next, the collected vectors are fed into our novel metric learning-based deep neural network(DNN) to get the detection result.
arXiv Detail & Related papers (2023-01-20T23:16:04Z) - SmartIntentNN: Towards Smart Contract Intent Detection [5.9789082082171525]
We introduce textscSmartIntentNN (Smart Contract Intent Neural Network), a deep learning-based tool designed to automate the detection of developers' intent in smart contracts.
Our approach integrates a Universal Sentence for contextual representation of smart contract code, and employs a K-means clustering algorithm to highlight intent-related code features.
Evaluations on 10,000 real-world smart contracts demonstrate that textscSmartIntentNN surpasses all baselines, achieving an F1-score of 0.8633.
arXiv Detail & Related papers (2022-11-24T15:36:35Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
Implicit neural networks offer competitive performance and reduced memory consumption.
They can remain brittle with respect to input adversarial perturbations.
This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks.
arXiv Detail & Related papers (2021-12-10T03:08:55Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - A Bytecode-based Approach for Smart Contract Classification [10.483992071557195]
The number of smart contracts deployed on blockchain platforms is growing exponentially, which makes it difficult for users to find desired services by manual screening.
Current research on smart contract classification focuses on Natural Language Processing (NLP) solutions which are based on contract source code.
This paper proposes a classification model based on features from contract bytecode instead of source code to solve these problems.
arXiv Detail & Related papers (2021-05-31T03:00:29Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.