Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study
- URL: http://arxiv.org/abs/2312.16533v1
- Date: Wed, 27 Dec 2023 11:26:26 GMT
- Title: Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study
- Authors: Christoph Sendner, Lukas Petzi, Jasper Stang, Alexandra Dmitrienko,
- Abstract summary: In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars.
Various tools have been developed to detect and mitigate vulnerabilities in smart contracts.
This study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice.
- Score: 44.25093111430751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ethereum smart contracts, which are autonomous decentralized applications on the blockchain that manage assets often exceeding millions of dollars, have become primary targets for cyberattacks. In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars. To counter these threats, various tools have been developed by academic and commercial entities to detect and mitigate vulnerabilities in smart contracts. Our study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice. We compiled four distinct datasets for this analysis. The first dataset comprises 77,219 source codes extracted directly from the blockchain, while the second includes over 4 million bytecodes obtained from Ethereum Mainnet and testnets. The other two datasets consist of nearly 14,000 manually annotated smart contracts and 373 smart contracts verified through audits, providing a foundation for a rigorous ground truth analysis on bytecode and source code. Using the unlabeled datasets, we conducted a comprehensive quantitative evaluation of 17 vulnerability scanners, revealing considerable discrepancies in their findings. Our analysis of the ground truth datasets indicated poor performance across all the tools we tested. This study unveils the reasons for poor performance and underscores that the current state of the art for smart contract security falls short in effectively addressing open problems, highlighting that the challenge of effectively detecting vulnerabilities remains a significant and unresolved issue.
Related papers
- Smart Contract Vulnerabilities, Tools, and Benchmarks: An Updated Systematic Literature Review [2.4646766265478393]
Smart contracts are self-executing programs on blockchain platforms like, which have revolutionized decentralized finance by enabling trustless transactions and the operation of decentralized applications.
Despite their potential, the security of smart contracts remains a critical concern due to their immutability and transparency, which expose them to malicious actors.
This paper presents a systematic literature review that explores vulnerabilities in smart contracts, focusing on automated detection tools and benchmark evaluation.
arXiv Detail & Related papers (2024-12-02T17:08:48Z) - Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
We analyze the state of the art in machine-learning vulnerability detection for smart contracts.
We discuss best practices to enhance the accuracy, scope, and efficiency of vulnerability detection in smart contracts.
arXiv Detail & Related papers (2024-07-26T10:09:44Z) - Versioned Analysis of Software Quality Indicators and Self-admitted Technical Debt in Ethereum Smart Contracts with Ethstractor [2.052808596154225]
This paper proposes Ethstractor, the first smart contract collection tool for gathering a dataset of versioned smart contracts.
The collected dataset is then used to evaluate the reliability of code metrics as indicators of vulnerabilities in smart contracts.
arXiv Detail & Related papers (2024-07-22T18:27:29Z) - Efficiently Detecting Reentrancy Vulnerabilities in Complex Smart Contracts [35.26195628798847]
Existing vulnerability detection tools perform poorly in terms of efficiency and successful detection rates for vulnerabilities in complex contracts.
SliSE provides a robust and efficient method for detection of Reentrancy vulnerabilities for complex contracts.
arXiv Detail & Related papers (2024-03-17T16:08:30Z) - Empirical Review of Smart Contract and DeFi Security: Vulnerability
Detection and Automated Repair [36.46679501556185]
Decentralized Finance (DeFi) is emerging as a peer-to-peer financial ecosystem.
smart contracts hold a massive amount of value, making them an attractive target for attacks.
This paper reviews the progress made in the field of smart contract and DeFi security from the perspective of both vulnerability detection and automated repair.
arXiv Detail & Related papers (2023-09-05T17:00:42Z) - Smart Contract and DeFi Security Tools: Do They Meet the Needs of
Practitioners? [10.771021805354911]
Attacks targeting smart contracts are increasing, causing an estimated $6.45 billion in financial losses.
We aim to shed light on the effectiveness of automated security tools in identifying vulnerabilities that can lead to high-profile attacks.
Our findings reveal a stark reality: the tools could have prevented a mere 8% of the attacks in our dataset, amounting to $149 million out of the $2.3 billion in losses.
arXiv Detail & Related papers (2023-04-06T10:27:19Z) - An Automated Vulnerability Detection Framework for Smart Contracts [18.758795474791427]
We propose a framework to automatically detect vulnerabilities in smart contracts on the blockchain.
More specifically, first, we utilize novel feature vector generation techniques from bytecode of smart contract.
Next, the collected vectors are fed into our novel metric learning-based deep neural network(DNN) to get the detection result.
arXiv Detail & Related papers (2023-01-20T23:16:04Z) - Combining Graph Neural Networks with Expert Knowledge for Smart Contract
Vulnerability Detection [37.7763374870026]
Existing efforts for contract security analysis rely on rigid rules defined by experts, which are labor-intensive and non-scalable.
We propose a novel temporal message propagation network to extract the graph feature from the normalized graph, and combine the graph feature with designed expert patterns to yield a final detection system.
arXiv Detail & Related papers (2021-07-24T13:16:30Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.