Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study
- URL: http://arxiv.org/abs/2312.16533v1
- Date: Wed, 27 Dec 2023 11:26:26 GMT
- Title: Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study
- Authors: Christoph Sendner, Lukas Petzi, Jasper Stang, Alexandra Dmitrienko,
- Abstract summary: In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars.
Various tools have been developed to detect and mitigate vulnerabilities in smart contracts.
This study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice.
- Score: 44.25093111430751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ethereum smart contracts, which are autonomous decentralized applications on the blockchain that manage assets often exceeding millions of dollars, have become primary targets for cyberattacks. In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars. To counter these threats, various tools have been developed by academic and commercial entities to detect and mitigate vulnerabilities in smart contracts. Our study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice. We compiled four distinct datasets for this analysis. The first dataset comprises 77,219 source codes extracted directly from the blockchain, while the second includes over 4 million bytecodes obtained from Ethereum Mainnet and testnets. The other two datasets consist of nearly 14,000 manually annotated smart contracts and 373 smart contracts verified through audits, providing a foundation for a rigorous ground truth analysis on bytecode and source code. Using the unlabeled datasets, we conducted a comprehensive quantitative evaluation of 17 vulnerability scanners, revealing considerable discrepancies in their findings. Our analysis of the ground truth datasets indicated poor performance across all the tools we tested. This study unveils the reasons for poor performance and underscores that the current state of the art for smart contract security falls short in effectively addressing open problems, highlighting that the challenge of effectively detecting vulnerabilities remains a significant and unresolved issue.
Related papers
- Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
We analyze the state of the art in machine-learning vulnerability detection for smart contracts.
We discuss best practices to enhance the accuracy, scope, and efficiency of vulnerability detection in smart contracts.
arXiv Detail & Related papers (2024-07-26T10:09:44Z) - Versioned Analysis of Software Quality Indicators and Self-admitted Technical Debt in Ethereum Smart Contracts with Ethstractor [2.052808596154225]
This paper proposes Ethstractor, the first smart contract collection tool for gathering a dataset of versioned smart contracts.
The collected dataset is then used to evaluate the reliability of code metrics as indicators of vulnerabilities in smart contracts.
arXiv Detail & Related papers (2024-07-22T18:27:29Z) - Dual-view Aware Smart Contract Vulnerability Detection for Ethereum [5.002702845720439]
We propose a Dual-view Aware Smart Contract Vulnerability Detection Framework named DVDet.
The framework initially converts the source code and bytecode of smart contracts into weighted graphs and control flow sequences.
Comprehensive experiments on the dataset show that our method outperforms others in detecting vulnerabilities.
arXiv Detail & Related papers (2024-06-29T06:47:51Z) - A Comprehensive Study of Governance Issues in Decentralized Finance
Applications [45.033994319846244]
We present a comprehensive study of governance issues in DeFi applications.
We collect and build a dataset of 4,446 audit reports from 17 Web3 security companies.
Our findings highlight a significant observation: the disparity between smart contract code and DeFi whitepapers plays a central role in these governance issues.
arXiv Detail & Related papers (2023-11-02T17:46:59Z) - Smart Contract and DeFi Security Tools: Do They Meet the Needs of
Practitioners? [10.771021805354911]
Attacks targeting smart contracts are increasing, causing an estimated $6.45 billion in financial losses.
We aim to shed light on the effectiveness of automated security tools in identifying vulnerabilities that can lead to high-profile attacks.
Our findings reveal a stark reality: the tools could have prevented a mere 8% of the attacks in our dataset, amounting to $149 million out of the $2.3 billion in losses.
arXiv Detail & Related papers (2023-04-06T10:27:19Z) - An Automated Vulnerability Detection Framework for Smart Contracts [18.758795474791427]
We propose a framework to automatically detect vulnerabilities in smart contracts on the blockchain.
More specifically, first, we utilize novel feature vector generation techniques from bytecode of smart contract.
Next, the collected vectors are fed into our novel metric learning-based deep neural network(DNN) to get the detection result.
arXiv Detail & Related papers (2023-01-20T23:16:04Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Combining Graph Neural Networks with Expert Knowledge for Smart Contract
Vulnerability Detection [37.7763374870026]
Existing efforts for contract security analysis rely on rigid rules defined by experts, which are labor-intensive and non-scalable.
We propose a novel temporal message propagation network to extract the graph feature from the normalized graph, and combine the graph feature with designed expert patterns to yield a final detection system.
arXiv Detail & Related papers (2021-07-24T13:16:30Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.