Exploring validation metrics for offline model-based optimisation with
diffusion models
- URL: http://arxiv.org/abs/2211.10747v3
- Date: Sat, 13 Jan 2024 22:40:37 GMT
- Title: Exploring validation metrics for offline model-based optimisation with
diffusion models
- Authors: Christopher Beckham, Alexandre Piche, David Vazquez, Christopher Pal
- Abstract summary: In model-based optimisation (MBO) we are interested in using machine learning to design candidates that maximise some measure of reward with respect to a black box function called the (ground truth) oracle.
While an approximation to the ground oracle can be trained and used in place of it during model validation to measure the mean reward over generated candidates, the evaluation is approximate and vulnerable to adversarial examples.
This is encapsulated under our proposed evaluation framework which is also designed to measure extrapolation.
- Score: 50.404829846182764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In model-based optimisation (MBO) we are interested in using machine learning
to design candidates that maximise some measure of reward with respect to a
black box function called the (ground truth) oracle, which is expensive to
compute since it involves executing a real world process. In offline MBO we
wish to do so without assuming access to such an oracle during training or
validation, with makes evaluation non-straightforward. While an approximation
to the ground oracle can be trained and used in place of it during model
validation to measure the mean reward over generated candidates, the evaluation
is approximate and vulnerable to adversarial examples. Measuring the mean
reward of generated candidates over this approximation is one such `validation
metric', whereas we are interested in a more fundamental question which is
finding which validation metrics correlate the most with the ground truth. This
involves proposing validation metrics and quantifying them over many datasets
for which the ground truth is known, for instance simulated environments. This
is encapsulated under our proposed evaluation framework which is also designed
to measure extrapolation, which is the ultimate goal behind leveraging
generative models for MBO. While our evaluation framework is model agnostic we
specifically evaluate denoising diffusion models due to their state-of-the-art
performance, as well as derive interesting insights such as ranking the most
effective validation metrics as well as discussing important hyperparameters.
Related papers
- A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
We introduce the first formal probabilistic evaluation framework in Large Language Models (LLMs)
We derive novel metrics with high-probability guarantees concerning the output distribution of a model.
Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment.
arXiv Detail & Related papers (2024-10-04T15:44:23Z) - An Optimism-based Approach to Online Evaluation of Generative Models [23.91197677628145]
We propose an online evaluation framework to find the generative model that maximizes a standard assessment score among a group of available models.
Specifically, we study the online assessment of generative models based on the Fr'echet Inception Distance (FID) and Inception Score (IS) metrics.
arXiv Detail & Related papers (2024-06-11T16:57:48Z) - Weak Supervision Performance Evaluation via Partial Identification [46.73061437177238]
Programmatic Weak Supervision (PWS) enables supervised model training without direct access to ground truth labels.
We present a novel method to address this challenge by framing model evaluation as a partial identification problem.
Our approach derives reliable bounds on key metrics without requiring labeled data, overcoming core limitations in current weak supervision evaluation techniques.
arXiv Detail & Related papers (2023-12-07T07:15:11Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
In this paper, we propose to use the Minimum Description Length (MDL) principle to devise an evaluation metric.
We design a hybrid discrete and continuous-valued model space for the readout models and employ a switching strategy to combine their predictions.
The proposed metric can be efficiently computed with an online method and we present results for pre-trained vision encoders of various architectures.
arXiv Detail & Related papers (2023-02-19T14:08:01Z) - Firenze: Model Evaluation Using Weak Signals [5.723905680436377]
We introduce Firenze, a novel framework for comparative evaluation of machine learning models' performance.
We show that markers computed and combined over select subsets of samples called regions of interest can provide a robust estimate of their real-world performances.
arXiv Detail & Related papers (2022-07-02T13:20:38Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.