Deepfake Detection: A Comprehensive Study from the Reliability
Perspective
- URL: http://arxiv.org/abs/2211.10881v1
- Date: Sun, 20 Nov 2022 06:31:23 GMT
- Title: Deepfake Detection: A Comprehensive Study from the Reliability
Perspective
- Authors: Tianyi Wang and Kam Pui Chow and Xiaojun Chang and Yinglong Wang
- Abstract summary: The mushroomed Deepfake synthetic materials circulated on the internet have raised serious social impact.
This paper defines the research challenges of Deepfake detection in three aspects, namely, transferability, interpretability, and reliability.
- Score: 46.15242479794739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The mushroomed Deepfake synthetic materials circulated on the internet have
raised serious social impact to politicians, celebrities, and every human being
on earth. In this paper, we provide a thorough review of the existing models
following the development history of the Deepfake detection studies and define
the research challenges of Deepfake detection in three aspects, namely,
transferability, interpretability, and reliability. While the transferability
and interpretability challenges have both been frequently discussed and
attempted to solve with quantitative evaluations, the reliability issue has
been barely considered, leading to the lack of reliable evidence in real-life
usages and even for prosecutions on Deepfake related cases in court. We
therefore conduct a model reliability study scheme using statistical random
sampling knowledge and the publicly available benchmark datasets to
qualitatively validate the detection performance of the existing models on
arbitrary Deepfake candidate suspects. A barely remarked systematic data
pre-processing procedure is demonstrated along with the fair training and
testing experiments on the existing detection models. Case studies are further
executed to justify the real-life Deepfake cases including different groups of
victims with the help of reliably qualified detection models. The model
reliability study provides a workflow for the detection models to act as or
assist evidence for Deepfake forensic investigation in court once approved by
authentication experts or institutions.
Related papers
- Out-of-distribution detection in 3D applications: a review [1.188705980058767]
Object recognition methods assume that all object categories encountered during inference belong to a closed set of classes present in the training data.<n>This assumption limits generalization to the real world, as objects not seen during training may be misclassified or entirely ignored.<n>This paper provides a comprehensive overview of OOD detection within the broader scope of trustworthy and uncertain AI.
arXiv Detail & Related papers (2025-07-01T08:43:13Z) - Passive Deepfake Detection Across Multi-modalities: A Comprehensive Survey [1.7811840395202345]
deepfakes (DFs) have been utilized for malicious purposes, such as individual impersonation, misinformation spreading, and artists style imitation.
This survey offers researchers and practitioners a comprehensive resource for understanding the current landscape, methodological approaches, and promising future directions in this rapidly evolving field.
arXiv Detail & Related papers (2024-11-26T22:04:49Z) - Understanding Audiovisual Deepfake Detection: Techniques, Challenges, Human Factors and Perceptual Insights [49.81915942821647]
Deep Learning has been successfully applied in diverse fields, and its impact on deepfake detection is no exception.
Deepfakes are fake yet realistic synthetic content that can be used deceitfully for political impersonation, phishing, slandering, or spreading misinformation.
This paper aims to improve the effectiveness of deepfake detection strategies and guide future research in cybersecurity and media integrity.
arXiv Detail & Related papers (2024-11-12T09:02:11Z) - Introducing a Comprehensive, Continuous, and Collaborative Survey of Intrusion Detection Datasets [2.7082111912355877]
COMIDDS is an effort to comprehensively survey intrusion detection datasets with an unprecedented level of detail.
It provides structured and critical information on each dataset, including actual data samples and links to relevant publications.
arXiv Detail & Related papers (2024-08-05T14:40:41Z) - A Timely Survey on Vision Transformer for Deepfake Detection [11.410817278428533]
Vision Transformer (ViT)-based approaches showcase superior performance in generality and efficiency.
This survey aims to equip researchers with a nuanced understanding of ViT's pivotal role in deepfake detection.
arXiv Detail & Related papers (2024-05-14T09:33:04Z) - GazeForensics: DeepFake Detection via Gaze-guided Spatial Inconsistency
Learning [63.547321642941974]
We introduce GazeForensics, an innovative DeepFake detection method that utilizes gaze representation obtained from a 3D gaze estimation model.
Experiment results reveal that our proposed GazeForensics outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2023-11-13T04:48:33Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - The Challenges of Machine Learning for Trust and Safety: A Case Study on Misinformation Detection [0.8057006406834466]
We examine the disconnect between scholarship and practice in applying machine learning to trust and safety problems.
We survey literature on automated detection of misinformation across a corpus of 248 well-cited papers in the field.
We conclude that the current state-of-the-art in fully-automated detection has limited efficacy in detecting human-generated misinformation.
arXiv Detail & Related papers (2023-08-23T15:52:20Z) - DeepfakeBench: A Comprehensive Benchmark of Deepfake Detection [55.70982767084996]
A critical yet frequently overlooked challenge in the field of deepfake detection is the lack of a standardized, unified, comprehensive benchmark.
We present the first comprehensive benchmark for deepfake detection, called DeepfakeBench, which offers three key contributions.
DeepfakeBench contains 15 state-of-the-art detection methods, 9CL datasets, a series of deepfake detection evaluation protocols and analysis tools, as well as comprehensive evaluations.
arXiv Detail & Related papers (2023-07-04T01:34:41Z) - A Continual Deepfake Detection Benchmark: Dataset, Methods, and
Essentials [97.69553832500547]
This paper suggests a continual deepfake detection benchmark (CDDB) over a new collection of deepfakes from both known and unknown generative models.
We exploit multiple approaches to adapt multiclass incremental learning methods, commonly used in the continual visual recognition, to the continual deepfake detection problem.
arXiv Detail & Related papers (2022-05-11T13:07:19Z) - A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution
Detection: Solutions and Future Challenges [28.104112546546936]
Machine learning models often encounter samples that are diverged from the training distribution.
Despite having similar and shared concepts, out-of-distribution, open-set, and anomaly detection have been investigated independently.
This survey aims to provide a cross-domain and comprehensive review of numerous eminent works in respective areas.
arXiv Detail & Related papers (2021-10-26T22:05:31Z) - Deep Learning for Anomaly Detection: A Review [150.9270911031327]
This paper surveys the research of deep anomaly detection with a comprehensive taxonomy, covering advancements in three high-level categories and 11 fine-grained categories of the methods.
We review their key intuitions, objective functions, underlying assumptions, advantages and disadvantages, and discuss how they address the aforementioned challenges.
arXiv Detail & Related papers (2020-07-06T02:21:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.