Out-of-distribution detection in 3D applications: a review
- URL: http://arxiv.org/abs/2507.00570v1
- Date: Tue, 01 Jul 2025 08:43:13 GMT
- Title: Out-of-distribution detection in 3D applications: a review
- Authors: Zizhao Li, Xueyang Kang, Joseph West, Kourosh Khoshelham,
- Abstract summary: Object recognition methods assume that all object categories encountered during inference belong to a closed set of classes present in the training data.<n>This assumption limits generalization to the real world, as objects not seen during training may be misclassified or entirely ignored.<n>This paper provides a comprehensive overview of OOD detection within the broader scope of trustworthy and uncertain AI.
- Score: 1.188705980058767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to detect objects that are not prevalent in the training set is a critical capability in many 3D applications, including autonomous driving. Machine learning methods for object recognition often assume that all object categories encountered during inference belong to a closed set of classes present in the training data. This assumption limits generalization to the real world, as objects not seen during training may be misclassified or entirely ignored. As part of reliable AI, OOD detection identifies inputs that deviate significantly from the training distribution. This paper provides a comprehensive overview of OOD detection within the broader scope of trustworthy and uncertain AI. We begin with key use cases across diverse domains, introduce benchmark datasets spanning multiple modalities, and discuss evaluation metrics. Next, we present a comparative analysis of OOD detection methodologies, exploring model structures, uncertainty indicators, and distributional distance taxonomies, alongside uncertainty calibration techniques. Finally, we highlight promising research directions, including adversarially robust OOD detection and failure identification, particularly relevant to 3D applications. The paper offers both theoretical and practical insights into OOD detection, showcasing emerging research opportunities such as 3D vision integration. These insights help new researchers navigate the field more effectively, contributing to the development of reliable, safe, and robust AI systems.
Related papers
- RUNA: Object-level Out-of-Distribution Detection via Regional Uncertainty Alignment of Multimodal Representations [33.971901643313856]
RUNA is a novel framework for detecting out-of-distribution (OOD) objects.<n>It employs a regional uncertainty alignment mechanism to distinguish ID from OOD objects effectively.<n>Our experiments show that RUNA substantially surpasses state-of-the-art methods in object-level OOD detection.
arXiv Detail & Related papers (2025-03-28T10:01:55Z) - phepy: Visual Benchmarks and Improvements for Out-of-Distribution Detectors [0.0]
Testing OOD detection methods on real-world datasets is complicated by the ambiguity around which inputs are in-distribution (ID) or OOD.<n>We design a benchmark for OOD detection, which includes three novel and easily-visualisable toy examples.<n>We introduce two improvements, $t$-poking and OOD sample weighting, to make supervised detectors more precise at the ID-OOD boundary.
arXiv Detail & Related papers (2025-03-07T06:25:20Z) - Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - HD-OOD3D: Supervised and Unsupervised Out-of-Distribution object detection in LiDAR data [6.131026007721572]
HD-OOD3D is a novel two-stage method for detecting unknown objects.<n>To address the challenge of scaling the learning of unknown objects, we explore unsupervised training strategies to generate pseudo-labels for unknowns.
arXiv Detail & Related papers (2024-10-31T09:29:55Z) - CatFree3D: Category-agnostic 3D Object Detection with Diffusion [63.75470913278591]
We introduce a novel pipeline that decouples 3D detection from 2D detection and depth prediction.
We also introduce the Normalised Hungarian Distance (NHD) metric for an accurate evaluation of 3D detection results.
arXiv Detail & Related papers (2024-08-22T22:05:57Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Robustness-Aware 3D Object Detection in Autonomous Driving: A Review and Outlook [19.539295469044813]
This study emphasizes the importance of robustness, alongside accuracy and latency, in evaluating perception systems under practical scenarios.
Our work presents an extensive survey of camera-only, LiDAR-only, and multi-modal 3D object detection algorithms, thoroughly evaluating their trade-off between accuracy, latency, and robustness.
Among these, multi-modal 3D detection approaches exhibit superior robustness, and a novel taxonomy is introduced to reorganize the literature for enhanced clarity.
arXiv Detail & Related papers (2024-01-12T12:35:45Z) - Exploring Large Language Models for Multi-Modal Out-of-Distribution
Detection [67.68030805755679]
Large language models (LLMs) encode a wealth of world knowledge and can be prompted to generate descriptive features for each class.
In this paper, we propose to apply world knowledge to enhance OOD detection performance through selective generation from LLMs.
arXiv Detail & Related papers (2023-10-12T04:14:28Z) - Detecting Out-of-distribution Objects Using Neuron Activation Patterns [0.0]
We introduce Neuron Activation PaTteRns for out-of-distribution samples detection in Object detectioN (NAPTRON)
Our approach outperforms state-of-the-art methods, without the need to affect in-distribution (ID) performance.
We have created the largest open-source benchmark for OOD object detection.
arXiv Detail & Related papers (2023-07-31T06:41:26Z) - Generalized Out-of-Distribution Detection: A Survey [83.0449593806175]
Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems.
Several other problems, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD) are closely related to OOD detection.
We first present a unified framework called generalized OOD detection, which encompasses the five aforementioned problems.
arXiv Detail & Related papers (2021-10-21T17:59:41Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.