論文の概要: Modeling Fine-grained Information via Knowledge-aware Hierarchical Graph
for Zero-shot Entity Retrieval
- arxiv url: http://arxiv.org/abs/2211.10991v1
- Date: Sun, 20 Nov 2022 14:37:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 19:40:14.143913
- Title: Modeling Fine-grained Information via Knowledge-aware Hierarchical Graph
for Zero-shot Entity Retrieval
- Title(参考訳): ゼロショットエンティティ検索のための知識認識階層グラフによるきめ細かい情報モデリング
- Authors: Taiqiang Wu, Xingyu Bai, Weigang Guo, Weijie Liu, Siheng Li, Yujiu
Yang
- Abstract要約: 我々は,よりきめ細かい情報を文埋め込みに補完するものとして,GERを提案する。
これらの知識ユニットから情報を集約することで、言及/関心に関するきめ細かい情報を学習する。
一般的なベンチマーク実験の結果,提案するGERフレームワークは,従来の最先端モデルよりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 11.533614615010643
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-shot entity retrieval, aiming to link mentions to candidate entities
under the zero-shot setting, is vital for many tasks in Natural Language
Processing. Most existing methods represent mentions/entities via the sentence
embeddings of corresponding context from the Pre-trained Language Model.
However, we argue that such coarse-grained sentence embeddings can not fully
model the mentions/entities, especially when the attention scores towards
mentions/entities are relatively low. In this work, we propose GER, a
\textbf{G}raph enhanced \textbf{E}ntity \textbf{R}etrieval framework, to
capture more fine-grained information as complementary to sentence embeddings.
We extract the knowledge units from the corresponding context and then
construct a mention/entity centralized graph. Hence, we can learn the
fine-grained information about mention/entity by aggregating information from
these knowledge units. To avoid the graph information bottleneck for the
central mention/entity node, we construct a hierarchical graph and design a
novel Hierarchical Graph Attention Network~(HGAN). Experimental results on
popular benchmarks demonstrate that our proposed GER framework performs better
than previous state-of-the-art models. The code has been available at
https://github.com/wutaiqiang/GER-WSDM2023.
- Abstract(参考訳): ゼロショットエンティティ検索は、参照をゼロショット設定下の候補エンティティにリンクすることを目的としており、自然言語処理において多くのタスクに不可欠である。
既存のほとんどのメソッドは、事前訓練された言語モデルから対応するコンテキストの文の埋め込みを通して参照/エンティティを表現する。
しかし,このような粗粒度文埋め込みは言及/関係を十分にモデル化することはできない,特に言及/関係に対する注意スコアが比較的低い場合にはなおさらである。
本稿では,文埋め込みの補完として,よりきめ細かい情報を取り込むためのフレームワークであるgerを提案する。
対応するコンテキストから知識単位を抽出し、参照/エンティティ集中型グラフを構築する。
したがって、これらの知識単位から情報を集約することで、参照/エンティティに関するきめ細かい情報を得ることができる。
中央参照/集中ノードのグラフ情報のボトルネックを回避するため、階層グラフを構築し、新しい階層グラフ注意ネットワーク~(HGAN)を設計する。
評価実験の結果,提案するGERフレームワークは,従来の最先端モデルよりも優れた性能を示した。
コードはhttps://github.com/wutaiqiang/GER-WSDM2023で公開されている。
関連論文リスト
- TIGER: Temporally Improved Graph Entity Linker [6.111040278075022]
textbfTIGER: textbfTemporally textbfImproved textbfGraph textbfEntity Linketextbfr。
textbfTIGER: textbfTemporally textbfImproved textbfGraph textbfEntity Linketextbfr。
我々は学習した表現を強化し、実体を作る
論文 参考訳(メタデータ) (2024-10-11T09:44:33Z) - Wiki Entity Summarization Benchmark [9.25319552487389]
エンティティの要約は知識グラフにおけるエンティティの簡潔な要約を計算することを目的としている。
既存のデータセットとベンチマークは、しばしば数百のエンティティに制限される。
我々は、エンティティ、要約、およびそれらの接続からなる包括的なベンチマークであるWikESを提案する。
論文 参考訳(メタデータ) (2024-06-12T17:22:00Z) - Relation Rectification in Diffusion Model [64.84686527988809]
本稿では,最初に生成できない関係を正確に表現するためにモデルを洗練することを目的とした,リレーション・リクティフィケーション(Relation Rectification)と呼ばれる新しいタスクを紹介する。
異種グラフ畳み込みネットワーク(HGCN)を利用した革新的な解を提案する。
軽量HGCNは、テキストエンコーダによって生成されたテキスト埋め込みを調整し、埋め込み空間におけるテキスト関係の正確な反映を保証する。
論文 参考訳(メタデータ) (2024-03-29T15:54:36Z) - Coreference Graph Guidance for Mind-Map Generation [5.289044688419791]
近年、最先端の手法が文書の文を逐次エンコードし、シークエンス・トゥ・グラフを介して関係グラフに変換する。
外部構造知識を組み込むためのコア推論誘導マインドマップ生成ネットワーク(CMGN)を提案する。
論文 参考訳(メタデータ) (2023-12-19T09:39:27Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
汎用知識グラフ(KG)を用いた会話意味解析の課題を,数百万のエンティティと数千のリレーショナルタイプで検討する。
ユーザ発話を実行可能な論理形式にインタラクティブにマッピングできるモデルに焦点を当てる。
論文 参考訳(メタデータ) (2023-05-04T16:04:41Z) - Document-level Relation Extraction with Cross-sentence Reasoning Graph [14.106582119686635]
関係抽出(RE)は、最近、文レベルから文書レベルに移行した。
GRaph情報集約・クロスセンス推論ネットワーク(GRACR)を用いた新しい文書レベルのREモデルを提案する。
実験結果から,GRACRは文書レベルのREの2つの公開データセットにおいて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-03-07T14:14:12Z) - Scientific Paper Extractive Summarization Enhanced by Citation Graphs [50.19266650000948]
我々は、引用グラフを活用して、異なる設定下での科学的論文の抽出要約を改善することに重点を置いている。
予備的な結果は、単純な教師なしフレームワークであっても、引用グラフが有用であることを示している。
そこで我々は,大規模ラベル付きデータが利用可能である場合のタスクにおいて,より正確な結果を得るために,グラフベースのスーパービジョン・サムライゼーション・モデル(GSS)を提案する。
論文 参考訳(メタデータ) (2022-12-08T11:53:12Z) - Entity Type Prediction Leveraging Graph Walks and Entity Descriptions [4.147346416230273]
textitGRANDは、RDF2vecの異なるグラフウォーク戦略とテキストエンティティ記述を利用したエンティティ型付けの新しいアプローチである。
提案手法は,細粒度クラスと粗粒度クラスの両方において,KGにおけるエンティティ型付けのためのベンチマークデータセットDBpediaとFIGERのベースラインアプローチよりも優れている。
論文 参考訳(メタデータ) (2022-07-28T13:56:55Z) - Dual ResGCN for Balanced Scene GraphGeneration [106.7828712878278]
本稿では,オブジェクト残差グラフ畳み込みネットワークと関係残差グラフ畳み込みネットワークからなる新しいモデルであるtextitdual ResGCNを提案する。
2つのネットワークは相互に補完的であり、前者はオブジェクトレベルのコンテキスト情報、すなわちオブジェクト間の接続をキャプチャする。
後者は、関係レベルのコンテキスト情報、すなわち関係間の関係を明示的にキャプチャするように設計されている。
論文 参考訳(メタデータ) (2020-11-09T07:44:17Z) - Autoregressive Entity Retrieval [55.38027440347138]
エンティティは、知識の表現と集約の方法の中心にあります。
クエリが与えられたエンティティを検索できることは、エンティティリンクやオープンドメインの質問応答のような知識集約的なタスクに基本となる。
本稿では,自己回帰方式でトークン・バイ・トークンを左から右に生成し,エンティティを検索する最初のシステムであるGENREを提案する。
論文 参考訳(メタデータ) (2020-10-02T10:13:31Z) - Iterative Context-Aware Graph Inference for Visual Dialog [126.016187323249]
本稿では,新しいコンテキスト認識グラフ(CAG)ニューラルネットワークを提案する。
グラフの各ノードは、オブジェクトベース(視覚)と履歴関連(テキスト)コンテキスト表現の両方を含む、共同意味機能に対応している。
論文 参考訳(メタデータ) (2020-04-05T13:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。