論文の概要: Document-level Relation Extraction with Cross-sentence Reasoning Graph
- arxiv url: http://arxiv.org/abs/2303.03912v1
- Date: Tue, 7 Mar 2023 14:14:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-08 15:14:26.221789
- Title: Document-level Relation Extraction with Cross-sentence Reasoning Graph
- Title(参考訳): クロスセンス推論グラフを用いた文書レベルの関係抽出
- Authors: Hongfei Liu, Zhao Kang, Lizong Zhang, Ling Tian, and Fujun Hua
- Abstract要約: 関係抽出(RE)は、最近、文レベルから文書レベルに移行した。
GRaph情報集約・クロスセンス推論ネットワーク(GRACR)を用いた新しい文書レベルのREモデルを提案する。
実験結果から,GRACRは文書レベルのREの2つの公開データセットにおいて優れた性能を発揮することが示された。
- 参考スコア(独自算出の注目度): 14.106582119686635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Relation extraction (RE) has recently moved from the sentence-level to
document-level, which requires aggregating document information and using
entities and mentions for reasoning. Existing works put entity nodes and
mention nodes with similar representations in a document-level graph, whose
complex edges may incur redundant information. Furthermore, existing studies
only focus on entity-level reasoning paths without considering global
interactions among entities cross-sentence. To these ends, we propose a novel
document-level RE model with a GRaph information Aggregation and Cross-sentence
Reasoning network (GRACR). Specifically, a simplified document-level graph is
constructed to model the semantic information of all mentions and sentences in
a document, and an entity-level graph is designed to explore relations of
long-distance cross-sentence entity pairs. Experimental results show that GRACR
achieves excellent performance on two public datasets of document-level RE. It
is especially effective in extracting potential relations of cross-sentence
entity pairs. Our code is available at https://github.com/UESTC-LHF/GRACR.
- Abstract(参考訳): 関係抽出(RE)は文レベルから文書レベルへ移行し、文書情報を集約し、推論のためにエンティティや言及を使用する必要がある。
既存の作業では、エンティティノードと、ドキュメントレベルのグラフに類似した表現を持つノードに言及している。
さらに、既存研究では、エンティティ間のグローバルな相互作用を考慮せずに、エンティティレベルの推論パスのみに焦点を当てている。
本稿では,グラフ情報集約とクロスセンス推論ネットワーク(gracr)を用いた,新しい文書レベルのreモデルを提案する。
具体的には、文書中のすべての言及と文の意味情報をモデル化するために簡略化された文書レベルグラフを構築し、遠距離クロスセンスエンティティペアの関係を探索するためにエンティティレベルグラフを設計する。
実験の結果,GRACRは文書レベルのREの2つの公開データセットにおいて優れた性能を発揮することがわかった。
これは特に交叉関係対の潜在的な関係を抽出するのに有効である。
私たちのコードはhttps://github.com/UESTC-LHF/GRACRで公開されています。
関連論文リスト
- Graph-tree Fusion Model with Bidirectional Information Propagation for Long Document Classification [20.434941308959786]
長い文書分類は、その広範な内容と複雑な構造のために困難を呈する。
既存のメソッドはトークン制限に苦しむことが多く、ドキュメント内の階層的関係を適切にモデル化することができない。
本手法は,文エンコーディングのための構文木と文書エンコーディングのための文書グラフを統合し,より詳細な構文関係とより広い文書コンテキストを抽出する。
論文 参考訳(メタデータ) (2024-10-03T19:25:01Z) - Hypergraph based Understanding for Document Semantic Entity Recognition [65.84258776834524]
我々は,ハイパグラフアテンションを利用したハイパグラフアテンション文書セマンティックエンティティ認識フレームワークHGAを構築し,エンティティ境界とエンティティカテゴリを同時に重視する。
FUNSD, CORD, XFUNDIE で得られた結果は,本手法が意味的エンティティ認識タスクの性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2024-07-09T14:35:49Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
学術論文からN-ary関係を抽出する問題について考察する。
提案手法であるReSelは,このタスクを2段階のプロシージャに分解する。
3つの科学的情報抽出データセットに対する実験により、ReSelは最先端のベースラインを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2022-10-26T02:28:02Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
文書レベルの関係抽出(DocRE)は、複数の文の文書から2つのエンティティ間の関係を決定することを目的としている。
我々はDocREのための文重要度スコアと文集中損失を設計するSIEF(Sentence Estimation and Focusing)フレームワークを提案する。
2つのドメインの実験結果から、SIEFは全体的なパフォーマンスを改善するだけでなく、DocREモデルをより堅牢にします。
論文 参考訳(メタデータ) (2022-04-27T03:20:07Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASSは、統合されたセマンティックグラフに基づく抽象的な要約を促進するためのフレームワークである。
文書表現と要約生成の両方を改善するために,グラフベースのエンコーダデコーダモデルを提案する。
実験結果から,提案アーキテクチャは長期文書および複数文書要約タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2021-05-25T16:20:48Z) - Mention-centered Graph Neural Network for Document-level Relation
Extraction [2.724649366608364]
我々は, 相互関係関係を推定することで, 相互関係を構築する。
実験は、異なる言及間の接続が文書レベルの関係抽出に重要であることを示している。
論文 参考訳(メタデータ) (2021-03-15T08:19:44Z) - Coarse-to-Fine Entity Representations for Document-level Relation
Extraction [28.39444850200523]
文書レベルの関係抽出(RE: Document-level Relation extract)は、文内および文間で表現される関係を抽出する必要がある。
最近の研究は、通常文書レベルの相互作用をキャプチャする文書レベルのグラフを構築するグラフベースの手法が有用なエンティティ表現を得ることができることを示している。
粗大な戦略を採用する textbfCoarse-to-textbfFine textbfEntity textbfRepresentation model (textbfCFER) を提案する。
論文 参考訳(メタデータ) (2020-12-04T10:18:59Z) - Double Graph Based Reasoning for Document-level Relation Extraction [29.19714611415326]
文書レベルの関係抽出は、文書内のエンティティ間の関係を抽出することを目的としている。
二重グラフを特徴とするグラフ集約と推論ネットワーク(GAIN)を提案する。
公開データセットの実験であるDocREDは、GAINが以前の最先端技術よりも大幅なパフォーマンス改善(2.85 on F1)を達成したことを示している。
論文 参考訳(メタデータ) (2020-09-29T03:41:01Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
我々は、文書のよく知られたグラフ表現を活用することができる、抽象的多文書要約(MDS)モデルを開発する。
本モデルでは,長い文書の要約に欠かせない文書間関係を捉えるために,文書の符号化にグラフを利用する。
また,このモデルでは,要約生成プロセスの導出にグラフを利用することが可能であり,一貫性と簡潔な要約を生成するのに有用である。
論文 参考訳(メタデータ) (2020-05-20T13:39:47Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
本稿では,潜在文書レベルグラフを自動的に誘導することにより,文間の関係推論を促進する新しいモデルを提案する。
具体的には、大規模文書レベルデータセット(DocRED)上でF1スコア59.05を達成する。
論文 参考訳(メタデータ) (2020-05-13T13:36:09Z) - Heterogeneous Graph Neural Networks for Extractive Document
Summarization [101.17980994606836]
クロス文関係は、抽出文書要約における重要なステップである。
We present a graph-based neural network for extractive summarization (HeterSumGraph)
抽出文書要約のためのグラフベースニューラルネットワークに異なる種類のノードを導入する。
論文 参考訳(メタデータ) (2020-04-26T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。