論文の概要: Deep Learning on a Healthy Data Diet: Finding Important Examples for
Fairness
- arxiv url: http://arxiv.org/abs/2211.11109v1
- Date: Sun, 20 Nov 2022 22:42:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 17:18:25.575207
- Title: Deep Learning on a Healthy Data Diet: Finding Important Examples for
Fairness
- Title(参考訳): 健康データダイエットの深層学習 : フェアネスの重要事例を探る
- Authors: Abdelrahman Zayed, Prasanna Parthasarathi, Goncalo Mordido, Hamid
Palangi, Samira Shabanian, Sarath Chandar
- Abstract要約: データ駆動予測ソリューションは、主に商用アプリケーションで使われているが、バイアスやステレオタイプに悩まされる傾向がある。
データ拡張は、トレーニングデータセットに反実例を追加することで、性別バイアスを低減する。
拡張データセットのいくつかの例は、公平性には重要でも有害でもないことを示します。
- 参考スコア(独自算出の注目度): 15.210232622716129
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven predictive solutions predominant in commercial applications tend
to suffer from biases and stereotypes, which raises equity concerns. Prediction
models may discover, use, or amplify spurious correlations based on gender or
other protected personal characteristics, thus discriminating against
marginalized groups. Mitigating gender bias has become an important research
focus in natural language processing (NLP) and is an area where annotated
corpora are available. Data augmentation reduces gender bias by adding
counterfactual examples to the training dataset. In this work, we show that
some of the examples in the augmented dataset can be not important or even
harmful for fairness. We hence propose a general method for pruning both the
factual and counterfactual examples to maximize the model's fairness as
measured by the demographic parity, equality of opportunity, and equality of
odds. The fairness achieved by our method surpasses that of data augmentation
on three text classification datasets, using no more than half of the examples
in the augmented dataset. Our experiments are conducted using models of varying
sizes and pre-training settings.
- Abstract(参考訳): 主に商用アプリケーションにおけるデータ駆動予測ソリューションは、バイアスやステレオタイプに苦しむ傾向があるため、エクイティの懸念が高まる。
予測モデルは、性別や他の保護された個人的特徴に基づいて、スプリアス相関を発見し、使用し、または増幅し、それによって辺縁化されたグループと区別することができる。
ジェンダーバイアスの緩和は、自然言語処理(NLP)において重要な研究対象となり、注釈付きコーパスが利用できる領域となっている。
データ拡張は、トレーニングデータセットに反実例を追加することで、性別バイアスを低減する。
本研究では,拡張データセットの例のいくつかが,公平性にとって重要でも有害でもないことを示す。
そこで本研究では,実例と反実例の両方を抽出して,人口統計学的パーティ,機会平等,オッズ平等によって測定されたモデルの公平性を最大化する手法を提案する。
本手法により得られた公平さは,3つのテキスト分類データセットにおけるデータ拡張よりも優れており,拡張データセットの例の半数に過ぎなかった。
実験は、様々なサイズと事前学習設定のモデルを用いて実施する。
関連論文リスト
- AIM: Attributing, Interpreting, Mitigating Data Unfairness [40.351282126410545]
既存の公正機械学習(FairML)の研究は、モデル予測における差別バイアスの軽減に重点を置いている。
トレーニングデータからバイアスや偏見を反映したサンプルの発見という,新たな研究課題について検討する。
サンプルバイアスの測定と対策のための実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-13T05:21:10Z) - The Impact of Debiasing on the Performance of Language Models in
Downstream Tasks is Underestimated [70.23064111640132]
我々は、幅広いベンチマークデータセットを用いて、複数の下流タスクのパフォーマンスに対するデバイアスの影響を比較した。
実験により、デバイアスの効果は全てのタスクにおいて一貫して見積もられていることが示されている。
論文 参考訳(メタデータ) (2023-09-16T20:25:34Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Prisoners of Their Own Devices: How Models Induce Data Bias in
Performative Prediction [4.874780144224057]
偏見のあるモデルは、社会の特定のグループに不均等に害を与える決定を下すことができる。
多くの作業は静的ML環境での不公平さを測定することに費やされているが、動的でパフォーマンスのよい予測は行っていない。
本稿では,データのバイアスを特徴付ける分類法を提案する。
論文 参考訳(メタデータ) (2022-06-27T10:56:04Z) - Does Data Repair Lead to Fair Models? Curating Contextually Fair Data To
Reduce Model Bias [10.639605996067534]
コンテキスト情報は、より優れた表現を学び、精度を向上させるために、ディープニューラルネットワーク(DNN)にとって貴重なキューである。
COCOでは、多くの対象カテゴリーは、男性よりも男性の方がはるかに高い共起性を持ち、男性に有利なDNNの予測を偏見を与える可能性がある。
本研究では, 変動係数を用いたデータ修復アルゴリズムを導入し, 保護されたクラスに対して, 公平かつ文脈的にバランスの取れたデータをキュレートする。
論文 参考訳(メタデータ) (2021-10-20T06:00:03Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
現在の顔認識(FR)モデルには、人口統計バイアスが存在する。
さまざまな民族と性別のサブグループにまたがる偏見を測定するために、我々のバランス・フェイススをWildデータセットに導入します。
真偽と偽のサンプルペアを区別するために1点のスコアしきい値に依存すると、最適以下の結果が得られます。
本稿では,最先端ニューラルネットワークから抽出した顔特徴を用いたドメイン適応学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-16T15:05:49Z) - Unfairness Discovery and Prevention For Few-Shot Regression [9.95899391250129]
歴史データの識別(あるいは偏見)に敏感な教師付き数発メタラーニングモデルの公平性について検討する。
偏りのあるデータに基づいてトレーニングされた機械学習モデルは、少数グループのユーザに対して不公平な予測を行う傾向がある。
論文 参考訳(メタデータ) (2020-09-23T22:34:06Z) - Towards Accuracy-Fairness Paradox: Adversarial Example-based Data
Augmentation for Visual Debiasing [15.689539491203373]
機械学習の公平性は、ターゲットタスクに対処する際に、特定の保護された、または機密性の高いグループに対するバイアスを懸念する。
本稿では,画像分類タスクの文脈におけるバイアス問題について検討する。
論文 参考訳(メタデータ) (2020-07-27T15:17:52Z) - Enhancing Facial Data Diversity with Style-based Face Aging [59.984134070735934]
特に、顔データセットは、通常、性別、年齢、人種などの属性の観点からバイアスされる。
本稿では, 細粒度の老化パターンをキャプチャするデータ拡張のための, 生成スタイルに基づく新しいアーキテクチャを提案する。
提案手法は, 年齢移動のための最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-06T21:53:44Z) - Contrastive Examples for Addressing the Tyranny of the Majority [83.93825214500131]
我々は,グループメンバーシップを介在する,オリジナルのデータセットと新たなデータポイントからなるバランスの取れたトレーニングデータセットを作成することを提案する。
コントラッシブ・サンプル(英語版)と呼ばれるこれらのデータポイントを学習するための強力なツールとして、現在の生成的敵ネットワークが重要であることを示す。
論文 参考訳(メタデータ) (2020-04-14T14:06:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。