論文の概要: Explainable Model-specific Algorithm Selection for Multi-Label
Classification
- arxiv url: http://arxiv.org/abs/2211.11227v1
- Date: Mon, 21 Nov 2022 07:42:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 22:03:04.305982
- Title: Explainable Model-specific Algorithm Selection for Multi-Label
Classification
- Title(参考訳): マルチラベル分類のための説明可能なモデル固有アルゴリズム選択
- Authors: Ana Kostovska, Carola Doerr, Sa\v{s}o D\v{z}eroski, Dragi Kocev,
Pan\v{c}e Panov, Tome Eftimov
- Abstract要約: MLC(Multi-label classification)は、データインスタンスが同時に複数のクラスに属すことができる予測モデリングのMLタスクである。
いくつかのMLCアルゴリズムが文献で提案されており、メタ最適化の問題を引き起こしている。
本研究では,データセットの特性を利用した自動アプローチの品質について検討する。
- 参考スコア(独自算出の注目度): 6.442438468509492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-label classification (MLC) is an ML task of predictive modeling in
which a data instance can simultaneously belong to multiple classes. MLC is
increasingly gaining interest in different application domains such as text
mining, computer vision, and bioinformatics. Several MLC algorithms have been
proposed in the literature, resulting in a meta-optimization problem that the
user needs to address: which MLC approach to select for a given dataset? To
address this algorithm selection problem, we investigate in this work the
quality of an automated approach that uses characteristics of the datasets -
so-called features - and a trained algorithm selector to choose which algorithm
to apply for a given task. For our empirical evaluation, we use a portfolio of
38 datasets. We consider eight MLC algorithms, whose quality we evaluate using
six different performance metrics. We show that our automated algorithm
selector outperforms any of the single MLC algorithms, and this is for all
evaluated performance measures. Our selection approach is explainable, a
characteristic that we exploit to investigate which meta-features have the
largest influence on the decisions made by the algorithm selector. Finally, we
also quantify the importance of the most significant meta-features for various
domains.
- Abstract(参考訳): MLC(Multi-label classification)は、データインスタンスが同時に複数のクラスに属すことができる予測モデリングのMLタスクである。
MLCはテキストマイニング、コンピュータビジョン、バイオインフォマティクスといった様々な応用分野への関心が高まっている。
文献ではいくつかのMLCアルゴリズムが提案されており、その結果、ユーザが対処する必要があるメタ最適化問題が発生している。
このアルゴリズム選択問題に対処するため,本研究では,データセットの特徴を特徴とする自動アプローチと,与えられたタスクに適用するアルゴリズムを選択するための訓練されたアルゴリズムセレクタの品質について検討する。
経験的評価には、38のデータセットのポートフォリオを使用します。
6つの異なる性能指標を用いて評価する8つのmlcアルゴリズムについて検討した。
提案するアルゴリズムセレクタは,単一のmlcアルゴリズムのどれよりも優れていることを示す。
提案手法は,アルゴリズムセレクタが行う決定に対して,どのメタ機能が最も大きな影響を与えるかを調べる上で有効である。
最後に、様々なドメインにおける最も重要なメタ機能の重要性も定量化します。
関連論文リスト
- A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective Continuous Optimization [4.173197621837912]
単目的連続ブラックボックス最適化の分野におけるアルゴリズム選択への重要な貢献について概説する。
自動アルゴリズム選択、構成、性能予測のための機械学習モデルについて検討する。
論文 参考訳(メタデータ) (2024-06-08T11:11:14Z) - Multi-objective Binary Coordinate Search for Feature Selection [0.24578723416255746]
大規模特徴選択問題の解法として,二元多目的座標探索(MOCS)アルゴリズムを提案する。
その結果,実世界の5つの大規模データセットにおいて,NSGA-IIよりも提案手法が優れていることが示唆された。
論文 参考訳(メタデータ) (2024-02-20T00:50:26Z) - Large Language Model-Enhanced Algorithm Selection: Towards Comprehensive Algorithm Representation [27.378185644892984]
本稿では,Large Language Models (LLM) をアルゴリズム選択に導入する。
LLMはアルゴリズムの構造的・意味的な側面を捉えるだけでなく、文脈的認識とライブラリ機能理解も示している。
選択されたアルゴリズムは、与えられた問題と異なるアルゴリズムの一致度によって決定される。
論文 参考訳(メタデータ) (2023-11-22T06:23:18Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
不均衡学習はデータマイニングにおいて基本的な課題であり、各クラスにトレーニングサンプルの不均等な比率が存在する。
オーバーサンプリングは、少数民族のための合成サンプルを生成することによって、不均衡な学習に取り組む効果的な手法である。
我々は,異なるレベルの意思決定を共同で最適化できる自動オーバーサンプリングアルゴリズムであるAutoSMOTEを提案する。
論文 参考訳(メタデータ) (2022-08-26T04:28:01Z) - Fair Feature Subset Selection using Multiobjective Genetic Algorithm [0.0]
フェアネスと精度を両立させる特徴部分選択手法を提案する。
モデル性能の指標としてF1-Scoreを用いる。
最も一般的なフェアネスベンチマークデータセットの実験では、進化的アルゴリズムを用いることで、フェアネスと精度のトレードオフを効果的に探索できることが示されている。
論文 参考訳(メタデータ) (2022-04-30T22:51:19Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Algorithm Selection on a Meta Level [58.720142291102135]
本稿では,与えられたアルゴリズムセレクタの組み合わせに最適な方法を求めるメタアルゴリズム選択の問題を紹介する。
本稿では,メタアルゴリズム選択のための一般的な方法論フレームワークと,このフレームワークのインスタンス化として具体的な学習手法を提案する。
論文 参考訳(メタデータ) (2021-07-20T11:23:21Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
モデルに依存しないメタラーニング (MAML) が人気のある研究分野となっている。
既存のMAMLアルゴリズムは、イテレーション毎にメタモデルを更新するためにいくつかのタスクとデータポイントをサンプリングすることで、エピソードのアイデアに依存している。
本稿では,MAMLのメモリベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-09T08:47:58Z) - Towards Meta-Algorithm Selection [78.13985819417974]
インスタンス固有のアルゴリズム選択(AS)は、固定された候補集合からのアルゴリズムの自動選択を扱う。
メタアルゴリズムの選択は、いくつかのケースで有益であることを示す。
論文 参考訳(メタデータ) (2020-11-17T17:27:33Z) - Automatic selection of clustering algorithms using supervised graph
embedding [14.853602181549967]
MARCO-GEはクラスタリングアルゴリズムの自動推奨のための新しいメタラーニング手法である。
ランキングメタモデルをトレーニングし、新しいデータセットとクラスタリング評価尺度の上位パフォーマンスアルゴリズムを正確に推奨する。
論文 参考訳(メタデータ) (2020-11-16T19:13:20Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。