論文の概要: Large Language Model-Enhanced Algorithm Selection: Towards Comprehensive Algorithm Representation
- arxiv url: http://arxiv.org/abs/2311.13184v3
- Date: Thu, 16 May 2024 02:54:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 19:14:33.686902
- Title: Large Language Model-Enhanced Algorithm Selection: Towards Comprehensive Algorithm Representation
- Title(参考訳): 大規模言語モデル強化アルゴリズム選択:包括的アルゴリズム表現を目指して
- Authors: Xingyu Wu, Yan Zhong, Jibin Wu, Bingbing Jiang, Kay Chen Tan,
- Abstract要約: 本稿では,Large Language Models (LLM) をアルゴリズム選択に導入する。
LLMはアルゴリズムの構造的・意味的な側面を捉えるだけでなく、文脈的認識とライブラリ機能理解も示している。
選択されたアルゴリズムは、与えられた問題と異なるアルゴリズムの一致度によって決定される。
- 参考スコア(独自算出の注目度): 27.378185644892984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Algorithm selection, a critical process of automated machine learning, aims to identify the most suitable algorithm for solving a specific problem prior to execution. Mainstream algorithm selection techniques heavily rely on problem features, while the role of algorithm features remains largely unexplored. Due to the intrinsic complexity of algorithms, effective methods for universally extracting algorithm information are lacking. This paper takes a significant step towards bridging this gap by introducing Large Language Models (LLMs) into algorithm selection for the first time. By comprehending the code text, LLM not only captures the structural and semantic aspects of the algorithm, but also demonstrates contextual awareness and library function understanding. The high-dimensional algorithm representation extracted by LLM, after undergoing a feature selection module, is combined with the problem representation and passed to the similarity calculation module. The selected algorithm is determined by the matching degree between a given problem and different algorithms. Extensive experiments validate the performance superiority of the proposed model and the efficacy of each key module. Furthermore, we present a theoretical upper bound on model complexity, showcasing the influence of algorithm representation and feature selection modules. This provides valuable theoretical guidance for the practical implementation of our method.
- Abstract(参考訳): 自動機械学習の重要なプロセスであるアルゴリズム選択は、実行前に特定の問題を解決するのに最適なアルゴリズムを特定することを目的としている。
メインストリームのアルゴリズム選択技術は問題の特徴に大きく依存するが、アルゴリズム機能の役割は未解明のままである。
アルゴリズムの本質的な複雑さのため、アルゴリズム情報を普遍的に抽出する効果的な方法が欠如している。
本稿では,Large Language Models (LLM) をアルゴリズム選択に導入することにより,このギャップを埋める大きな一歩を踏み出した。
コードテキストの理解により、LLMはアルゴリズムの構造的・意味的な側面を捉えるだけでなく、文脈的認識とライブラリ機能理解も示している。
LLMが抽出した高次元アルゴリズム表現は、特徴選択モジュールを実行した後、問題表現と組み合わせ、類似性計算モジュールに渡される。
選択されたアルゴリズムは、与えられた問題と異なるアルゴリズムの一致度によって決定される。
広範囲な実験により提案モデルの性能優位性と各キーモジュールの有効性が検証された。
さらに,アルゴリズム表現と特徴選択モジュールの影響を示すモデル複雑性に関する理論的上限を示す。
これにより,本手法の実用化に有効な理論的ガイダンスが得られた。
関連論文リスト
- On the Design and Analysis of LLM-Based Algorithms [74.7126776018275]
大規模言語モデル(LLM)はアルゴリズムのサブルーチンとして使用される。
LLMは素晴らしい経験的成功を収めた。
我々のフレームワークはLLMベースのアルゴリズムの進歩を約束している。
LLMアルゴリズムのさらなる研究を促進するため、ソースコードはhttps://github.com/modelscope/agentscope/tree/main/examples/paper_llm_based_algorithmで公開しています。
論文 参考訳(メタデータ) (2024-07-20T07:39:07Z) - Algorithm Evolution Using Large Language Model [18.03090066194074]
大規模言語モデル(AEL)を用いた進化的アルゴリズムを提案する。
AELはモデルトレーニングなしでアルゴリズムレベルの進化を行う。
人間の努力とドメイン知識の要求は大幅に削減できる。
論文 参考訳(メタデータ) (2023-11-26T09:38:44Z) - Dual Algorithmic Reasoning [9.701208207491879]
本稿では,基礎となるアルゴリズム問題の双対性を利用してアルゴリズムを学習することを提案する。
アルゴリズム学習における最適化問題の2つの定義を同時に学習することで、より良い学習が可能になることを実証する。
次に、難易度の高い脳血管分類タスクにデプロイすることで、二元アルゴリズム推論の現実的な実用性を検証する。
論文 参考訳(メタデータ) (2023-02-09T08:46:23Z) - Practical, Provably-Correct Interactive Learning in the Realizable
Setting: The Power of True Believers [12.09273192079783]
我々は、対話型学習を実現可能な設定で検討し、最適な腕の識別からアクティブな分類に至るまでの問題に対処する一般的な枠組みを開発する。
我々は,最小限の値と対数係数とを一致させる,計算効率のよい新しいアルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-11-09T02:33:36Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Algorithm Selection on a Meta Level [58.720142291102135]
本稿では,与えられたアルゴリズムセレクタの組み合わせに最適な方法を求めるメタアルゴリズム選択の問題を紹介する。
本稿では,メタアルゴリズム選択のための一般的な方法論フレームワークと,このフレームワークのインスタンス化として具体的な学習手法を提案する。
論文 参考訳(メタデータ) (2021-07-20T11:23:21Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。