論文の概要: LSTM based models stability in the context of Sentiment Analysis for
social media
- arxiv url: http://arxiv.org/abs/2211.11246v1
- Date: Mon, 21 Nov 2022 08:31:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 18:53:36.894777
- Title: LSTM based models stability in the context of Sentiment Analysis for
social media
- Title(参考訳): ソーシャルメディアにおける感情分析の文脈におけるlstmモデル安定性
- Authors: Bousselham El Haddaoui, Raddouane Chiheb, Rdouan Faizi and Abdellatif
El Afia
- Abstract要約: LSTMモデルとそのキーパラメータについて述べる。
感性分析の文脈でこれらのモデルの安定性をテストする実験を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning techniques have proven their effectiveness for Sentiment
Analysis (SA) related tasks. Recurrent neural networks (RNN), especially Long
Short-Term Memory (LSTM) and Bidirectional LSTM, have become a reference for
building accurate predictive models. However, the models complexity and the
number of hyperparameters to configure raises several questions related to
their stability. In this paper, we present various LSTM models and their key
parameters, and we perform experiments to test the stability of these models in
the context of Sentiment Analysis.
- Abstract(参考訳): 深層学習技術は感性分析(SA)関連課題に有効であることが証明されている。
リカレントニューラルネットワーク(RNN)、特にLong Short-Term Memory(LSTM)とBidirectional LSTMは、正確な予測モデルを構築するための基準となっている。
しかしながら、モデルの複雑さと構成するハイパーパラメータの数は、その安定性に関するいくつかの疑問を提起する。
本稿では,LSTMモデルとその鍵となるパラメータについて述べるとともに,これらのモデルの安定性を感性分析の文脈で検証する実験を行う。
関連論文リスト
- Advancing Financial Risk Prediction Through Optimized LSTM Model Performance and Comparative Analysis [12.575399233846092]
本稿では、金融リスク予測におけるLSTMモデルの適用と最適化に焦点を当てる。
最適化LSTMモデルは、ランダムフォレスト、BPニューラルネットワーク、XGBoostと比較して、AUC指数において大きな利点を示す。
論文 参考訳(メタデータ) (2024-05-31T03:31:17Z) - HOPE for a Robust Parameterization of Long-memory State Space Models [51.66430224089725]
線形時間不変(LTI)システムを利用する状態空間モデル(SSM)は、長いシーケンスの学習において有効であることが知られている。
我々は,ハンケル作用素内のマルコフパラメータを利用するLTIシステムに対して,HOPEと呼ばれる新しいパラメータ化手法を開発した。
我々の新しいパラメータ化は、固定時間ウィンドウ内に非遅延メモリを付与し、パッドドノイズのあるシーケンシャルCIFAR-10タスクによって実証的に相関する。
論文 参考訳(メタデータ) (2024-05-22T20:20:14Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Efficient CNN-LSTM based Parameter Estimation of Levy Driven Stochastic
Differential Equations [0.0]
本研究では,非ガウス雑音による微分方程式のパラメータ推定の課題に対処する。
従来の研究は、アルファ安定レヴィ駆動SDEのパラメータ推定におけるLSTMネットワークの可能性を強調していた。
本稿では,CNN-LSTMに基づく新しい3段階モデルPEnetを紹介する。
論文 参考訳(メタデータ) (2024-03-07T06:07:31Z) - Understanding Self-attention Mechanism via Dynamical System Perspective [58.024376086269015]
SAM(Self-attention mechanism)は、人工知能の様々な分野で広く使われている。
常微分方程式(ODE)の高精度解における固有剛性現象(SP)は,高性能ニューラルネットワーク(NN)にも広く存在することを示す。
SAMは、本質的なSPを測定するためのモデルの表現能力を高めることができる剛性対応のステップサイズ適応器でもあることを示す。
論文 参考訳(メタデータ) (2023-08-19T08:17:41Z) - Switching Autoregressive Low-rank Tensor Models [12.461139675114818]
自己回帰型低ランクテンソル(SALT)モデルを切り替える方法について述べる。
SALTはARHMMのテンソルを低ランクの分解でパラメータ化し、パラメータの数を制御する。
本稿では,SALT,線形力学系,SLDS間の実用的関係を理論的に検証し議論する。
論文 参考訳(メタデータ) (2023-06-05T22:25:28Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - The DONUT Approach to EnsembleCombination Forecasting [0.0]
本稿では,M4Competitionデータセット上で強力な結果を示すアンサンブル予測手法を提案する。
提案手法は,主に自動生成機能と,より多様なモデルプールで構成され,統計的特徴に基づくアンサンブル法であるFFORMAよりも優れていた。
また,M4データセット上での線形最適化による差分を定量化するために,アンサンブルの最適組み合わせと選択に関する公式なポストファクト解析を行った。
論文 参考訳(メタデータ) (2022-01-02T22:19:26Z) - A journey in ESN and LSTM visualisations on a language task [77.34726150561087]
我々は,CSL(Cross-Situationnal Learning)タスクでESNとLSTMを訓練した。
その結果, 性能比較, 内部力学解析, 潜伏空間の可視化の3種類が得られた。
論文 参考訳(メタデータ) (2020-12-03T08:32:01Z) - On the Sparsity of Neural Machine Translation Models [65.49762428553345]
性能向上のために冗長パラメータを再利用できるかどうかを検討する。
実験と分析は異なるデータセットとNTTアーキテクチャで体系的に行われる。
論文 参考訳(メタデータ) (2020-10-06T11:47:20Z) - Sentiment Analysis Using Simplified Long Short-term Memory Recurrent
Neural Networks [1.5146765382501612]
GOPディベートTwitterデータセット上で感情分析を行う。
学習を高速化し、計算コストと時間を短縮するために、LSTMモデルのスリムバージョンを6つの異なるパラメータで削減する手法を提案する。
論文 参考訳(メタデータ) (2020-05-08T12:50:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。