論文の概要: Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs
- arxiv url: http://arxiv.org/abs/2204.06255v2
- Date: Thu, 14 Apr 2022 06:39:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-15 12:29:20.784222
- Title: Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs
- Title(参考訳): spdesを駆動するモデリングダイナミクスのための正則構造を持つニューラル演算子
- Authors: Peiyan Hu, Qi Meng, Bingguang Chen, Shiqi Gong, Yue Wang, Wei Chen,
Rongchan Zhu, Zhi-Ming Ma, Tie-Yan Liu
- Abstract要約: 偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
- 参考スコア(独自算出の注目度): 70.51212431290611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic partial differential equations (SPDEs) are significant tools for
modeling dynamics in many areas including atmospheric sciences and physics.
Neural Operators, generations of neural networks with capability of learning
maps between infinite-dimensional spaces, are strong tools for solving
parametric PDEs. However, they lack the ability to modeling SPDEs which usually
have poor regularity due to the driving noise. As the theory of regularity
structure has achieved great successes in analyzing SPDEs and provides the
concept model feature vectors that well-approximate SPDEs' solutions, we
propose the Neural Operator with Regularity Structure (NORS) which incorporates
the feature vectors for modeling dynamics driven by SPDEs. We conduct
experiments on various of SPDEs including the dynamic Phi41 model and the 2d
stochastic Navier-Stokes equation, and the results demonstrate that the NORS is
resolution-invariant, efficient, and achieves one order of magnitude lower
error with a modest amount of data.
- Abstract(参考訳): 確率偏微分方程式(steastic partial differential equation, spdes)は、大気科学や物理学を含む多くの分野におけるモデリングダイナミクスの重要な道具である。
無限次元空間間のマップを学習できるニューラルネットワークの世代であるニューラルオペレータは、パラメトリックPDEを解決する強力なツールである。
しかし、駆動ノイズのため通常規則性に乏しいSPDEをモデル化する能力は欠如している。
正規性構造の理論はSPDEの解析において大きな成功を収め、SPDEの解をよく近似する特徴ベクトルの概念モデルを提供するため、SPDEによって駆動される力学をモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
本研究では,動的phi41モデルと2次元確率ナビエ-ストークス方程式を含む様々なspdesについて実験を行い,norsが解像度不変で効率的であることを示し,少ないデータ量で1桁の低誤差を達成できることを示した。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
我々は物理符号化されたメッセージパッシンググラフネットワーク(PhyMPGN)という新しいグラフ学習手法を提案する。
我々は,GNNを数値積分器に組み込んで,与えられたPDEシステムに対する時間的時間的ダイナミクスの時間的行進を近似する。
PhyMPGNは、粗い非構造メッシュ上での様々なタイプの時間的ダイナミクスを正確に予測することができる。
論文 参考訳(メタデータ) (2024-10-02T08:54:18Z) - Neural Delay Differential Equations: System Reconstruction and Image
Classification [14.59919398960571]
我々はニューラル遅延微分方程式 (Neural Delay Differential Equations, NDDEs) という,遅延を伴う連続深度ニューラルネットワークの新しいクラスを提案する。
NODE と比較して、NDDE はより強い非線形表現能力を持つ。
我々は、合成されたデータだけでなく、よく知られた画像データセットであるCIFAR10に対しても、損失の低減と精度の向上を実現している。
論文 参考訳(メタデータ) (2023-04-11T16:09:28Z) - Learning PDE Solution Operator for Continuous Modeling of Time-Series [1.39661494747879]
この研究は、動的モデリング能力を改善する偏微分方程式(PDE)に基づくフレームワークを提案する。
時間的離散化の反復的操作や特定のグリッドを必要とせずに連続的に処理できるニューラル演算子を提案する。
我々のフレームワークは、現実世界のアプリケーションに容易に適用可能な、ニューラルネットワークの継続的な表現のための新しい方法を開く。
論文 参考訳(メタデータ) (2023-02-02T03:47:52Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Neural Generalized Ordinary Differential Equations with Layer-varying
Parameters [1.3691539554014036]
層状ニューラルGODEは標準ニューラルGODEよりも柔軟で汎用的であることを示す。
Neural-GODEは、予測精度でResNetsと互換性を持って実行しながら、計算とメモリの利点を享受する。
論文 参考訳(メタデータ) (2022-09-21T20:02:28Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Neural Stochastic Partial Differential Equations [1.2183405753834562]
物理に着想を得たニューラルアーキテクチャの2つの重要なクラスの拡張を提供するニューラルSPDEモデルを導入する。
一方、一般的な神経-通常、制御され、粗い-微分方程式モデルをすべて拡張し、入ってくる情報を処理することができる。
一方、関数空間間のマッピングをモデル化するニューラルネットワークの最近の一般化であるNeural Operatorsを拡張して、複雑なSPDEソリューション演算子を学習することができる。
論文 参考訳(メタデータ) (2021-10-19T20:35:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。