Optimal Extended Neighbourhood Rule $k$ Nearest Neighbours Ensemble
- URL: http://arxiv.org/abs/2211.11278v2
- Date: Thu, 15 Feb 2024 21:13:51 GMT
- Title: Optimal Extended Neighbourhood Rule $k$ Nearest Neighbours Ensemble
- Authors: Amjad Ali, Zardad Khan, Dost Muhammad Khan, Saeed Aldahmani
- Abstract summary: A new optimal extended neighborhood rule based ensemble method is proposed in this paper.
The ensemble is compared with state-of-the-art methods on 17 benchmark datasets using accuracy, Cohen's kappa, and Brier score (BS)
- Score: 1.8843687952462742
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The traditional k nearest neighbor (kNN) approach uses a distance formula
within a spherical region to determine the k closest training observations to a
test sample point. However, this approach may not work well when test point is
located outside this region. Moreover, aggregating many base kNN learners can
result in poor ensemble performance due to high classification errors. To
address these issues, a new optimal extended neighborhood rule based ensemble
method is proposed in this paper. This rule determines neighbors in k steps
starting from the closest sample point to the unseen observation and selecting
subsequent nearest data points until the required number of observations is
reached. Each base model is constructed on a bootstrap sample with a random
subset of features, and optimal models are selected based on out-of-bag
performance after building a sufficient number of models. The proposed ensemble
is compared with state-of-the-art methods on 17 benchmark datasets using
accuracy, Cohen's kappa, and Brier score (BS). The performance of the proposed
method is also assessed by adding contrived features in the original data.
Related papers
- Adaptive $k$-nearest neighbor classifier based on the local estimation of the shape operator [49.87315310656657]
We introduce a new adaptive $k$-nearest neighbours ($kK$-NN) algorithm that explores the local curvature at a sample to adaptively defining the neighborhood size.
Results on many real-world datasets indicate that the new $kK$-NN algorithm yields superior balanced accuracy compared to the established $k$-NN method.
arXiv Detail & Related papers (2024-09-08T13:08:45Z) - A Random Projection k Nearest Neighbours Ensemble for Classification via
Extended Neighbourhood Rule [0.5052937880533719]
Ensembles based on k nearest neighbours (kNN) combine a large number of base learners.
RPExNRule ensemble is proposed where bootstrap samples from the given training data are randomly projected into lower dimensions.
arXiv Detail & Related papers (2023-03-21T21:58:59Z) - A k nearest neighbours classifiers ensemble based on extended
neighbourhood rule and features subsets [0.4709844746265484]
kNN based ensemble methods minimise the effect of outliers by identifying a set of data points in the given feature space that are nearest to an unseen observation.
This paper proposes a k nearest neighbour ensemble where the neighbours are determined in k steps.
arXiv Detail & Related papers (2022-05-30T13:57:32Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - Distributed Adaptive Nearest Neighbor Classifier: Algorithm and Theory [6.696267547013535]
We propose a novel distributed adaptive NN classifier for which the number of nearest neighbors is a tuning parameterally chosen by a data-driven criterion.
An early stopping rule is proposed when searching for the optimal tuning parameter, which improves the finite sample performance.
In particular, we show that when the sub-sample sizes are sufficiently large, the proposed classifier achieves the nearly optimal convergence rate.
arXiv Detail & Related papers (2021-05-20T14:38:41Z) - Leveraging Reinforcement Learning for evaluating Robustness of KNN
Search Algorithms [0.0]
The problem of finding K-nearest neighbors in the given dataset for a given query point has been worked upon since several years.
In this paper, we survey some novel K-Nearest Neighbor Search approaches that tackles the problem of Search from the perspectives of computations.
In order to evaluate the robustness of a KNNS approach against adversarial points, we propose a generic Reinforcement Learning based framework for the same.
arXiv Detail & Related papers (2021-02-10T16:10:58Z) - Adversarial Examples for $k$-Nearest Neighbor Classifiers Based on
Higher-Order Voronoi Diagrams [69.4411417775822]
Adversarial examples are a widely studied phenomenon in machine learning models.
We propose an algorithm for evaluating the adversarial robustness of $k$-nearest neighbor classification.
arXiv Detail & Related papers (2020-11-19T08:49:10Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - A new hashing based nearest neighbors selection technique for big
datasets [14.962398031252063]
This paper proposes a new technique that enables the selection of nearest neighbors directly in the neighborhood of a given observation.
The proposed approach consists of dividing the data space into subcells of a virtual grid built on top of data space.
Our algorithm outperforms the original KNN in time efficiency with a prediction quality as good as that of KNN.
arXiv Detail & Related papers (2020-04-05T19:36:00Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
We study clustering methods for binary data, first defining aggregation criteria that measure the compactness of clusters.
Five new and original methods are introduced, using neighborhoods and population behavior optimization metaheuristics.
From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a comparison is performed for one of the aggregations using L1 dissimilarity, with hierarchical clustering, and a version of k-means: partitioning around medoids or PAM.
arXiv Detail & Related papers (2020-01-06T23:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.