Guided Depth Super-Resolution by Deep Anisotropic Diffusion
- URL: http://arxiv.org/abs/2211.11592v3
- Date: Tue, 28 Mar 2023 11:31:08 GMT
- Title: Guided Depth Super-Resolution by Deep Anisotropic Diffusion
- Authors: Nando Metzger, Rodrigo Caye Daudt, Konrad Schindler
- Abstract summary: We propose a novel approach which combines guided anisotropic diffusion with a deep convolutional network.
We achieve unprecedented results in three commonly used benchmarks for guided depth super-resolution.
- Score: 18.445649181582823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Performing super-resolution of a depth image using the guidance from an RGB
image is a problem that concerns several fields, such as robotics, medical
imaging, and remote sensing. While deep learning methods have achieved good
results in this problem, recent work highlighted the value of combining modern
methods with more formal frameworks. In this work, we propose a novel approach
which combines guided anisotropic diffusion with a deep convolutional network
and advances the state of the art for guided depth super-resolution. The edge
transferring/enhancing properties of the diffusion are boosted by the
contextual reasoning capabilities of modern networks, and a strict adjustment
step guarantees perfect adherence to the source image. We achieve unprecedented
results in three commonly used benchmarks for guided depth super-resolution.
The performance gain compared to other methods is the largest at larger scales,
such as x32 scaling. Code
(https://github.com/prs-eth/Diffusion-Super-Resolution) for the proposed method
is available to promote reproducibility of our results.
Related papers
- Pixel-Aligned Multi-View Generation with Depth Guided Decoder [86.1813201212539]
We propose a novel method for pixel-level image-to-multi-view generation.
Unlike prior work, we incorporate attention layers across multi-view images in the VAE decoder of a latent video diffusion model.
Our model enables better pixel alignment across multi-view images.
arXiv Detail & Related papers (2024-08-26T04:56:41Z) - DSR-Diff: Depth Map Super-Resolution with Diffusion Model [38.68563026759223]
We present a novel CDSR paradigm that utilizes a diffusion model within the latent space to generate guidance for depth map super-resolution.
Our proposed method has shown superior performance in extensive experiments when compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-11-16T14:18:10Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
This paper focuses on how to embed the high-dimensional spatial-spectral information of hyperspectral (HS) images efficiently and effectively.
We formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events.
Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable.
Experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-30T06:59:01Z) - Joint Implicit Image Function for Guided Depth Super-Resolution [11.325235139023931]
Guided depth super-resolution is a practical task where a low-resolution and noisy input depth map is restored to a high-resolution version.
We take the form of a general image but use a novel Joint Implicit Image Function representation to learn both the weights and values.
We demonstrate the effectiveness of our JIIF representation on guided depth super-resolution task, significantly outperforming state-of-the-art methods on three public benchmarks.
arXiv Detail & Related papers (2021-07-19T09:42:18Z) - Towards Unpaired Depth Enhancement and Super-Resolution in the Wild [121.96527719530305]
State-of-the-art data-driven methods of depth map super-resolution rely on registered pairs of low- and high-resolution depth maps of the same scenes.
We consider an approach to depth map enhancement based on learning from unpaired data.
arXiv Detail & Related papers (2021-05-25T16:19:16Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
We propose a novel attention-based hierarchical multi-modal fusion network for guided DSR.
We show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency.
arXiv Detail & Related papers (2021-04-04T03:28:33Z) - Interpretable Deep Multimodal Image Super-Resolution [23.48305854574444]
Multimodal image super-resolution (SR) is the reconstruction of a high resolution image given a low-resolution observation with the aid of another image modality.
We present a multimodal deep network design that integrates coupled sparse priors and allows the effective fusion of information from another modality into the reconstruction process.
arXiv Detail & Related papers (2020-09-07T14:08:35Z) - Deep Iterative Residual Convolutional Network for Single Image
Super-Resolution [31.934084942626257]
We propose a deep Iterative Super-Resolution Residual Convolutional Network (ISRResCNet)
It exploits the powerful image regularization and large-scale optimization techniques by training the deep network in an iterative manner with a residual learning approach.
Our method with a few trainable parameters improves the results for different scaling factors in comparison with the state-of-art methods.
arXiv Detail & Related papers (2020-09-07T12:54:14Z) - Progressively Guided Alternate Refinement Network for RGB-D Salient
Object Detection [63.18846475183332]
We aim to develop an efficient and compact deep network for RGB-D salient object detection.
We propose a progressively guided alternate refinement network to refine it.
Our model outperforms existing state-of-the-art approaches by a large margin.
arXiv Detail & Related papers (2020-08-17T02:55:06Z) - Multimodal Deep Unfolding for Guided Image Super-Resolution [23.48305854574444]
Deep learning methods rely on training data to learn an end-to-end mapping from a low-resolution input to a high-resolution output.
We propose a multimodal deep learning design that incorporates sparse priors and allows the effective integration of information from another image modality into the network architecture.
Our solution relies on a novel deep unfolding operator, performing steps similar to an iterative algorithm for convolutional sparse coding with side information.
arXiv Detail & Related papers (2020-01-21T14:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.