論文の概要: ESLAM: Efficient Dense SLAM System Based on Hybrid Representation of
Signed Distance Fields
- arxiv url: http://arxiv.org/abs/2211.11704v2
- Date: Mon, 3 Apr 2023 08:54:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-05 00:12:01.310144
- Title: ESLAM: Efficient Dense SLAM System Based on Hybrid Representation of
Signed Distance Fields
- Title(参考訳): ESLAM:符号付き距離場のハイブリッド表現に基づく高効率高密度SLAMシステム
- Authors: Mohammad Mahdi Johari, Camilla Carta, Fran\c{c}ois Fleuret
- Abstract要約: ESLAMは、未知のカメラポーズでRGB-Dフレームを読み出し、シーン表現を漸進的に再構築する。
ESLAMは3次元再構成の精度を向上し、最先端の高密度視覚SLAM法のカメラローカライゼーションを50%以上向上する。
- 参考スコア(独自算出の注目度): 2.0625936401496237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present ESLAM, an efficient implicit neural representation method for
Simultaneous Localization and Mapping (SLAM). ESLAM reads RGB-D frames with
unknown camera poses in a sequential manner and incrementally reconstructs the
scene representation while estimating the current camera position in the scene.
We incorporate the latest advances in Neural Radiance Fields (NeRF) into a SLAM
system, resulting in an efficient and accurate dense visual SLAM method. Our
scene representation consists of multi-scale axis-aligned perpendicular feature
planes and shallow decoders that, for each point in the continuous space,
decode the interpolated features into Truncated Signed Distance Field (TSDF)
and RGB values. Our extensive experiments on three standard datasets, Replica,
ScanNet, and TUM RGB-D show that ESLAM improves the accuracy of 3D
reconstruction and camera localization of state-of-the-art dense visual SLAM
methods by more than 50%, while it runs up to 10 times faster and does not
require any pre-training.
- Abstract(参考訳): 同時局所化マッピング(SLAM)のための効率的な暗黙的ニューラル表現法である ESLAM を提案する。
ESLAMは、未知のカメラポーズでRGB-Dフレームを読み出し、シーン内の現在のカメラ位置を推定しながらシーン表現を漸進的に再構築する。
ニューラルラジアンス場(NeRF)の最新の進歩をSLAMシステムに組み込んだ結果,高効率かつ高精度なビジュアルSLAM法が実現した。
シーン表現は、連続空間の各点に対して、補間された特徴をTrncated Signed Distance Field (TSDF) と RGB の値にデコードする多重スケールの軸整列垂直特徴平面と浅いデコーダから構成される。
Replica、ScanNet、TUM RGB-Dの3つの標準データセットに対する広範な実験により、ESLAMは最先端の高密度視覚SLAM法の精度を50%以上向上する一方で、最大10倍高速で、事前トレーニングを必要としないことが示された。
関連論文リスト
- IG-SLAM: Instant Gaussian SLAM [6.228980850646457]
3D Gaussian SplattingはSLAMシステムにおける代替シーン表現として期待できる結果を示した。
本稿では,RGBのみの高密度SLAMシステムであるIG-SLAMについて述べる。
我々は、最先端のRGBのみのSLAMシステムと競合する性能を示し、高速な動作速度を実現する。
論文 参考訳(メタデータ) (2024-08-02T09:07:31Z) - NIS-SLAM: Neural Implicit Semantic RGB-D SLAM for 3D Consistent Scene Understanding [31.56016043635702]
NIS-SLAMは,高効率な暗黙的意味論的RGB-D SLAMシステムである。
高忠実な表面再構成と空間的一貫したシーン理解のために、我々は高周波多分解能テトラヘドロンに基づく特徴を組み合わせた。
また、我々のアプローチが拡張現実のアプリケーションに応用可能であることも示している。
論文 参考訳(メタデータ) (2024-07-30T14:27:59Z) - Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians [87.48403838439391]
3D Splattingは、RGBのみの高密度SLAMの幾何学と外観の強力な表現として登場した。
本稿では,高密度な3次元ガウス写像表現を持つRGBのみのSLAMシステムを提案する。
Replica、TUM-RGBD、ScanNetのデータセットに対する実験は、グローバルに最適化された3Dガウスの有効性を示している。
論文 参考訳(メタデータ) (2024-05-26T12:26:54Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
カメラ画像と慣性測定による地図表現に3Dガウスアンを用いることで、精度の高いSLAMが実現できることを示す。
我々の手法であるMM3DGSは、より高速なスケール認識と軌道追跡の改善により、事前レンダリングの限界に対処する。
また,カメラと慣性測定ユニットを備えた移動ロボットから収集したマルチモーダルデータセットUT-MMもリリースした。
論文 参考訳(メタデータ) (2024-04-01T04:57:41Z) - RGBD GS-ICP SLAM [1.3108652488669732]
一般化反復閉点(G-ICP)と3次元ガウススプラッティング(DGS)を融合した新しい密度表現SLAM手法を提案する。
実験の結果,提案手法の有効性が示され,非常に高速な107 FPSが得られた。
論文 参考訳(メタデータ) (2024-03-19T08:49:48Z) - SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM [48.190398577764284]
SplaTAMは、単一のRGB-Dカメラからの高忠実度再構成を可能にするアプローチである。
基礎となるガウス表現に合わせて、単純なオンライントラッキングとマッピングシステムを採用している。
実験により,SplaTAMはカメラポーズ推定,マップ構築,既存手法に対する新規ビュー合成において最大2倍の性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-12-04T18:53:24Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAMは、ハイブリッド表現を備えた新しいRGB-DセマンティックSLAMアプローチである。
本手法は画像に基づく特徴抽出と多視点幾何制約を統合し,外観の細部を改良する。
実験により, 合成データと実世界のデータ追跡の両面において, 最先端の性能が得られた。
論文 参考訳(メタデータ) (2023-11-30T21:34:44Z) - Photo-SLAM: Real-time Simultaneous Localization and Photorealistic Mapping for Monocular, Stereo, and RGB-D Cameras [27.543561055868697]
Photo-SLAMは、ハイパープリミティブマップを備えた新しいSLAMフレームワークである。
そこで我々は,局所化のための明示的な幾何学的特徴を利用して,観測環境のテクスチャ情報を表現するために暗黙的な測光的特徴を学習する。
提案システムは,オンラインフォトリアリスティックマッピングのための最先端SLAMシステムよりも優れている。
論文 参考訳(メタデータ) (2023-11-28T12:19:00Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z) - NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM [111.83168930989503]
NICER-SLAMは、カメラポーズと階層的なニューラル暗黙マップ表現を同時に最適化するRGB SLAMシステムである。
近年のRGB-D SLAMシステムと競合する高密度マッピング,追跡,新しいビュー合成において,高い性能を示す。
論文 参考訳(メタデータ) (2023-02-07T17:06:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。