論文の概要: MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements
- arxiv url: http://arxiv.org/abs/2404.00923v1
- Date: Mon, 1 Apr 2024 04:57:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 23:16:25.676779
- Title: MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements
- Title(参考訳): MM3DGS SLAM:視覚・深度・慣性計測を用いた多モード3Dガウス型SLAM
- Authors: Lisong C. Sun, Neel P. Bhatt, Jonathan C. Liu, Zhiwen Fan, Zhangyang Wang, Todd E. Humphreys, Ufuk Topcu,
- Abstract要約: カメラ画像と慣性測定による地図表現に3Dガウスアンを用いることで、精度の高いSLAMが実現できることを示す。
我々の手法であるMM3DGSは、より高速なスケール認識と軌道追跡の改善により、事前レンダリングの限界に対処する。
また,カメラと慣性測定ユニットを備えた移動ロボットから収集したマルチモーダルデータセットUT-MMもリリースした。
- 参考スコア(独自算出の注目度): 59.70107451308687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simultaneous localization and mapping is essential for position tracking and scene understanding. 3D Gaussian-based map representations enable photorealistic reconstruction and real-time rendering of scenes using multiple posed cameras. We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM. Our method, MM3DGS, addresses the limitations of prior neural radiance field-based representations by enabling faster rendering, scale awareness, and improved trajectory tracking. Our framework enables keyframe-based mapping and tracking utilizing loss functions that incorporate relative pose transformations from pre-integrated inertial measurements, depth estimates, and measures of photometric rendering quality. We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit. Experimental evaluation on several scenes from the dataset shows that MM3DGS achieves 3x improvement in tracking and 5% improvement in photometric rendering quality compared to the current 3DGS SLAM state-of-the-art, while allowing real-time rendering of a high-resolution dense 3D map. Project Webpage: https://vita-group.github.io/MM3DGS-SLAM
- Abstract(参考訳): 位置追跡とシーン理解には,同時位置決めとマッピングが不可欠である。
3Dガウスの地図表現は、複数のポーズカメラを用いたシーンの写実的再構成とリアルタイムレンダリングを可能にする。
カメラ画像と慣性測定による地図表現に3Dガウスアンを用いることで、精度の高いSLAMが実現できることを示す。
我々の手法であるMM3DGSは、より高速なレンダリング、スケールの認識、軌道追跡の改善を可能にすることで、従来の神経放射場に基づく表現の限界に対処する。
本フレームワークは,予め統合された慣性測定,深度推定,光度レンダリング品質の測定から,相対的なポーズ変換を組み込んだ損失関数を利用したキーフレームマッピングと追跡を可能にする。
また,カメラと慣性測定ユニットを備えた移動ロボットから収集したマルチモーダルデータセットUT-MMもリリースした。
MM3DGSは3倍のトラッキング向上と5%のレンダリング品質向上を実現し,高解像度の高密度3Dマップのリアルタイムレンダリングを可能にした。
Project Webpage: https://vita-group.github.io/MM3DGS-SLAM
関連論文リスト
- MVS-GS: High-Quality 3D Gaussian Splatting Mapping via Online Multi-View Stereo [9.740087094317735]
オンライン多視点ステレオ手法を用いた高品質な3DGSモデリングのための新しいフレームワークを提案する。
本手法は,局所時間窓から逐次フレームを用いてMVS深度を推定し,包括的深度改善手法を適用した。
実験の結果,本手法は最先端の高密度SLAM法より優れていた。
論文 参考訳(メタデータ) (2024-12-26T09:20:04Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
スパースビューカメラ設定下での高解像度画像レンダリングのための一般化可能なガウススプラッティング手法を提案する。
我々は,人間のみのデータや人景データに基づいてガウスパラメータ回帰モジュールをトレーニングし,深度推定モジュールと共同で2次元パラメータマップを3次元空間に引き上げる。
いくつかのデータセットに対する実験により、我々の手法はレンダリング速度を超越しながら最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-11-18T08:18:44Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - LLMI3D: MLLM-based 3D Perception from a Single 2D Image [77.13869413871028]
マルチモーダルな大言語モデル(MLLM)は、一般的な能力では優れているが、3Dタスクでは性能が劣る。
本稿では,3次元局所空間物体認識の弱さ,テキストに基づく幾何学的数値出力の低さ,カメラ焦点変動の処理能力の低下に対する解決策を提案する。
我々は,事前学習したMLLMに対してパラメータ効率の良い微調整を採用し,強力な3次元知覚MLLMであるLLMI3Dを開発した。
論文 参考訳(メタデータ) (2024-08-14T10:00:16Z) - Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis [11.236094544193605]
従来の幾何学に基づくSLAMシステムは、密度の高い3D再構成機能を持たない。
本稿では,新しいビュー合成技術である3次元ガウススプラッティングを組み込んだリアルタイムRGB-D SLAMシステムを提案する。
論文 参考訳(メタデータ) (2024-08-10T21:23:08Z) - NEDS-SLAM: A Neural Explicit Dense Semantic SLAM Framework using 3D Gaussian Splatting [5.655341825527482]
NEDS-SLAMは3次元ガウス表現に基づく意味論的SLAMシステムである。
本研究では,事前学習したセグメンテーションヘッドからの誤推定の影響を低減するために,空間的に一貫性のある特徴融合モデルを提案する。
我々は,高次元意味的特徴をコンパクトな3次元ガウス表現に圧縮するために,軽量エンコーダデコーダを用いる。
論文 参考訳(メタデータ) (2024-03-18T11:31:03Z) - Gaussian Splatting SLAM [16.3858380078553]
単分子SLAMにおける3次元ガウス散乱の最初の応用について述べる。
我々の方法は3fpsで動作し、正確な追跡、マッピング、高品質なレンダリングに必要な表現を統一する。
ライブカメラから高忠実度で連続的に3Dシーンを再構築するためには、いくつかの革新が必要である。
論文 参考訳(メタデータ) (2023-12-11T18:19:04Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
空間校正カメラで撮影した多視点画像から3次元ポーズを復元する手法を提案する。
我々は3次元形状を利用して、入力画像をカメラ視点から切り離したポーズの潜在表現に融合する。
アーキテクチャは、カメラプロジェクション演算子に学習した表現を条件付け、ビュー当たりの正確な2次元検出を生成する。
論文 参考訳(メタデータ) (2020-04-05T12:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。