論文の概要: Hierarchical Graph Structures for Congestion and ETA Prediction
- arxiv url: http://arxiv.org/abs/2211.11762v1
- Date: Mon, 21 Nov 2022 15:35:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 16:50:06.915521
- Title: Hierarchical Graph Structures for Congestion and ETA Prediction
- Title(参考訳): 混雑とETA予測のための階層グラフ構造
- Authors: Florian Gr\"otschla and Jo\"el Mathys
- Abstract要約: Traffic4castは、リアルタイムデータに基づいて時間的トラフィックを予測するための年次コンペティションである。
本論文では,OpenStreetMapデータから抽出した道路グラフトポロジを直接処理するニューラルネットワークを用いたアプローチを提案する。
我々のアーキテクチャは階層的なグラフ表現を組み込んで、グラフの鍵交点とそれらを接続する最短経路の間の情報の流れを改善することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Traffic4cast is an annual competition to predict spatio temporal traffic
based on real world data. We propose an approach using Graph Neural Networks
that directly works on the road graph topology which was extracted from
OpenStreetMap data. Our architecture can incorporate a hierarchical graph
representation to improve the information flow between key intersections of the
graph and the shortest paths connecting them. Furthermore, we investigate how
the road graph can be compacted to ease the flow of information and make use of
a multi-task approach to predict congestion classes and ETA simultaneously. Our
code and models are released here:
https://github.com/floriangroetschla/NeurIPS2022-traffic4cast
- Abstract(参考訳): Traffic4castは、現実世界のデータに基づいて時空間トラフィックを予測するための年次コンペである。
本研究では,openstreetmapデータから抽出した道路グラフトポロジに直接動作するグラフニューラルネットワークを用いたアプローチを提案する。
我々のアーキテクチャは階層的なグラフ表現を組み込んで、グラフの鍵交点とそれらを接続する最短経路の間の情報の流れを改善することができる。
さらに,道路グラフをコンパクト化して情報の流れを容易にし,マルチタスクアプローチを用いて混雑クラスとETAを同時に予測する方法について検討した。
私たちのコードとモデルはここでリリースされます。 https://github.com/floriangroetschla/neurips2022-traffic4cast
関連論文リスト
- Graph Construction with Flexible Nodes for Traffic Demand Prediction [44.1996864038085]
本稿では,自由フローティング交通モードに適したグラフ構築手法を提案する。
グラフ内のノードのフレキシブルな位置決めを決定するために,新しい密度ベースクラスタリングアルゴリズム (HDPC-L) を提案する。
深セン自転車シェアリングデータセットとハイコウライドシェアリングデータセットの2つの実世界のデータセットに関する総合的な実験は、この手法がモデルの性能を大幅に改善することを示している。
論文 参考訳(メタデータ) (2024-03-01T04:38:51Z) - STG4Traffic: A Survey and Benchmark of Spatial-Temporal Graph Neural Networks for Traffic Prediction [9.467593700532401]
本稿では,グラフ学習戦略と一般的なグラフ畳み込みアルゴリズムの体系的なレビューを行う。
次に、最近提案された空間時間グラフネットワークモデルの長所と短所を包括的に分析する。
ディープラーニングフレームワークPyTorchを用いたSTG4Trafficという研究を構築し,2種類のトラフィックデータセットに対して,標準化されたスケーラブルなベンチマークを確立する。
論文 参考訳(メタデータ) (2023-07-02T06:56:52Z) - Sparsity exploitation via discovering graphical models in multi-variate
time-series forecasting [1.2762298148425795]
本稿では,グラフ生成モジュールとGNN予測モジュールを含む分離学習手法を提案する。
まず、Graphical Lasso(またはGraphLASSO)を使用して、データから空間パターンを直接利用してグラフ構造を構築します。
次に、これらのグラフ構造と入力データをGCRN(Graph Convolutional Recurrent Network)に適合させて予測モデルをトレーニングする。
論文 参考訳(メタデータ) (2023-06-29T16:48:00Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
従来見過ごされていた現象を調査し、多くの場合、元のグラフに対して密に連結された補グラフを見つけることができる。
より密度の高いグラフは、選択的で有意義な知識を伝達するための自然なブリッジを提供する元のグラフとノードを共有することができる。
この設定をグラフインターセクション誘導トランスファーラーニング(GITL)とみなし,eコマースや学術共同オーサシップ予測の実践的応用に動機づけられた。
論文 参考訳(メタデータ) (2023-02-27T22:56:06Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Unboxing the graph: Neural Relational Inference for Mobility Prediction [15.4049962498675]
グラフネットワーク(GNN)は、非ユークリッド空間データに広く応用されている。
本稿では,最適グラフモデルを動的に学習するニューラル推論を用いる。
論文 参考訳(メタデータ) (2022-01-25T13:26:35Z) - Bayesian Graph Convolutional Network for Traffic Prediction [23.30484840210517]
これらの問題を緩和するためにベイズグラフ畳み込みネットワーク(BGCN)フレームワークを提案する。
この枠組みの下では、グラフ構造はパラメトリック生成モデルからランダムな実現と見なされる。
本手法の有効性を5つの実世界データセットで検証し,BGCNが最新手法と比較して優れた性能を発揮することを実証した。
論文 参考訳(メタデータ) (2021-04-01T14:19:37Z) - Road Scene Graph: A Semantic Graph-Based Scene Representation Dataset
for Intelligent Vehicles [72.04891523115535]
本稿では,車載用特別シーングラフである道路シーングラフを提案する。
オブジェクトの提案だけでなく、ペアワイドな関係も提供します。
それらをトポロジカルグラフで整理することで、これらのデータは説明可能であり、完全に接続され、GCNによって容易に処理できる。
論文 参考訳(メタデータ) (2020-11-27T07:33:11Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。