Characterizing superradiant dynamics in atomic arrays via a cumulant
expansion approach
- URL: http://arxiv.org/abs/2211.11895v1
- Date: Mon, 21 Nov 2022 22:49:21 GMT
- Title: Characterizing superradiant dynamics in atomic arrays via a cumulant
expansion approach
- Authors: Oriol Rubies-Bigorda, Stefan Ostermann and Susanne F. Yelin
- Abstract summary: Ordered atomic arrays with subwavelength lattice spacing emit light collectively.
For fully inverted atomic arrays, this results in an initial burst of radiation and a fast build up of coherences between the atoms at initial times.
We benchmark the cumulant expansion approach and show that it correctly captures the cooperative dynamics resulting in superradiance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ordered atomic arrays with subwavelength lattice spacing emit light
collectively. For fully inverted atomic arrays, this results in an initial
burst of radiation and a fast build up of coherences between the atoms at
initial times. Based on a cumulant expansion of the equations of motion, we
derive exact analytical expressions for the emission properties and numerically
analyze the full many-body problem resulting in the collective decay process
for unprecedented system sizes of up to a few hundred atoms. We benchmark the
cumulant expansion approach and show that it correctly captures the cooperative
dynamics resulting in superradiance. For fully inverted arrays, this allows us
to extract the scaling of the superradiant peak with particle number. For
partially excited arrays where no coherences are shared among atoms, we also
determine the critical number of excitations required for the emergence of
superradiance in one- and two-dimensional geometries. In addition, we study the
robustness of superradiance in the case of non-unit filling and position
disorder.
Related papers
- Collectively enhanced Ramsey readout by cavity sub- to superradiant
transition [0.0]
We experimentally confirm a minimum threshold for superradiant emission on a narrow optical transition.
A $pi/2$-pulse places the atoms in a subradiant state, protected from collective cavity decay.
The scheme is a fundamentally new approach to atomic state readout characterized by its speed, simplicity, and high sensitivity.
arXiv Detail & Related papers (2023-06-21T20:18:28Z) - Collective Radiative Interactions in the Discrete Truncated Wigner
Approximation [0.0]
Superradiance of atomic arrays at sub-wavelength spacings has regained substantial interest.
We develop a semiclassical approach to this problem that allows to describe the coherent and dissipative many-body dynamics of interacting spins.
For small arrays we compare to exact simulations and a second order cumulant expansion.
We conclude by studying the radiative properties of a spatially extended three-dimensional, coherently driven gas.
arXiv Detail & Related papers (2023-05-31T13:11:32Z) - Long persistent anticorrelations in few-qubit arrays [117.44028458220427]
We consider theoretically the mechanisms to realize antibunching between the photons scattered on the array of two-level atoms.
Our goal is the antibunching that persists for the times much longer than the spontaneous emission lifetime of an individual atom.
arXiv Detail & Related papers (2023-03-03T16:59:41Z) - Dynamic population of multiexcitation subradiant states in incoherently
excited atomic arrays [0.0]
We show that a maximal coupling to long-lived subradiant states is achieved if only half of the atoms are initially excited.
In particular, we show that a maximal coupling to long-lived subradiant states is achieved if only half of the atoms are initially excited.
arXiv Detail & Related papers (2022-08-31T18:00:47Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Cavity Sub- and Superradiance Enhanced Ramsey Spectroscopy [0.0]
Ramsey spectroscopy in large, dense ensembles of ultra-cold atoms trapped in optical lattices suffers from dipole-dipole interaction induced shifts and collective superradiance limiting its precision and accuracy.
We propose a novel geometry implementing fast signal readout with minimal heating for large atom numbers at lower densities via an optical cavity operated in the weak single atom but strong collective coupling regime.
arXiv Detail & Related papers (2022-01-21T14:57:35Z) - Superradiance and subradiance in inverted atomic arrays [0.0]
Superradiance and subradiance are collective effects that emerge from coherent interactions between quantum emitters.
We use herein a mean-field approach to reduce the complex many-body system to an effective two-atom master equation.
We find that three-dimensional and two-dimensional inverted atomic arrays sustain superradiance below a critical lattice spacing.
arXiv Detail & Related papers (2021-10-21T17:17:24Z) - Spectral density reconstruction with Chebyshev polynomials [77.34726150561087]
We show how to perform controllable reconstructions of a finite energy resolution with rigorous error estimates.
This paves the way for future applications in nuclear and condensed matter physics.
arXiv Detail & Related papers (2021-10-05T15:16:13Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
Subradiant excitations propagate through the atomic array with very long lifetimes.
We demonstrate that one can harness these excitations to obtain tunable directional emission patterns.
We also benchmark how these directional emission patterns translate into collective, anisotropic dissipative couplings.
arXiv Detail & Related papers (2021-07-01T14:26:33Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Maximum refractive index of an atomic medium [58.720142291102135]
All optical materials with a positive refractive index have a value of index that is of order unity.
Despite the giant response of an isolated atom, we find that the maximum index does not indefinitely grow with increasing density.
We propose an explanation based upon strong-disorder renormalization group theory.
arXiv Detail & Related papers (2020-06-02T14:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.