論文の概要: MGADN: A Multi-task Graph Anomaly Detection Network for Multivariate
Time Series
- arxiv url: http://arxiv.org/abs/2211.12141v1
- Date: Tue, 22 Nov 2022 10:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 17:00:52.566449
- Title: MGADN: A Multi-task Graph Anomaly Detection Network for Multivariate
Time Series
- Title(参考訳): mgadn:多変量時系列のための多タスクグラフ異常検出ネットワーク
- Authors: Weixuan Xiong, Xiaochen Sun
- Abstract要約: 時系列の異常検出,特に多変量時系列(複数センサ付き時系列)は,ここ数年にわたって注目されてきた。
ニューラルネットワークを含む既存の方法は、タイムスタンプの観点からのみ、関係に集中する。
提案手法では,グラフニューラルネットワークから派生したGATを用いて,センサ間の接続を求める。
また,VAE(Variational Auto-Encoder)による予測損失と復元損失を両立させる手法も提案している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection of time series, especially multivariate time series(time
series with multiple sensors), has been focused on for several years. Though
existing method has achieved great progress, there are several challenging
problems to be solved. Firstly, existing method including neural network only
concentrate on the relationship in terms of timestamp. To be exact, they only
want to know how does the data in the past influence which in the future.
However, one sensor sometimes intervenes in other sensor such as the speed of
wind may cause decrease of temperature. Secondly, there exist two categories of
model for time series anomaly detection: prediction model and reconstruction
model. Prediction model is adept at learning timely representation while short
of capability when faced with sparse anomaly. Conversely, reconstruction model
is opposite. Therefore, how can we efficiently get the relationship both in
terms of both timestamp and sensors becomes our main topic. Our approach uses
GAT, which is originated from graph neural network, to obtain connection
between sensors. And LSTM is used to obtain relationships timely. Our approach
is also designed to be double headed to calculate both prediction loss and
reconstruction loss via VAE(Variational Auto-Encoder). In order to take
advantage of two sorts of model, multi-task optimization algorithm is used in
this model.
- Abstract(参考訳): 時系列の異常検出、特に多変量時系列(複数センサ付き時系列)は数年にわたって注目されてきた。
既存の手法は大きな進歩を遂げているが、解決すべき課題はいくつかある。
まず、ニューラルネットワークを含む既存の手法は、タイムスタンプの観点からのみ関係に集中する。
正確に言うと、彼らは過去のデータがどのように未来に影響を与えるのかを知りたいだけだ。
しかし、あるセンサーが風速などの他のセンサーに干渉することで温度が低下することがある。
第2に,時系列異常検出モデルには,予測モデルと再構成モデルという2つのカテゴリが存在する。
予測モデルは、スパース異常に直面した場合に能力が不足しながら、タイムリー表現の学習に適している。
逆に、再構築モデルは反対です。
したがって、タイムスタンプとセンサーの両方の観点から、どのように効率的に関係を得られるかが主要なトピックとなる。
提案手法では,グラフニューラルネットワークから派生したGATを用いて,センサ間の接続を求める。
そしてLSTMは、タイムリーに関係を得るために使用される。
提案手法は,vae(variational auto-encoder)による予測損失と再構成損失を両立させるように設計されている。
このモデルでは,2種類のモデルを活用するためにマルチタスク最適化アルゴリズムが用いられている。
関連論文リスト
- Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
時系列における教師なし異常検出は、手動による介入の必要性を大幅に低減するため、産業応用において不可欠である。
従来の手法では、グラフニューラルネットワーク(GNN)やトランスフォーマーを使用して空間を解析し、RNNは時間的依存をモデル化していた。
本稿では,TopoGDNと呼ばれる多変量時系列異常検出のための拡張グラフ注意ネットワーク(GAT)上に構築された新しい時間モデルを提案する。
論文 参考訳(メタデータ) (2024-08-23T14:06:30Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
任意の軌道をマスク入力として処理する統一軌道生成モデルUniTrajを提案する。
具体的には,空間特徴抽出のためのトランスフォーマーエンコーダ内に埋め込まれたゴースト空間マスキング(GSM)モジュールを導入する。
バスケットボール-U,サッカー-U,サッカー-Uの3つの実用的なスポーツゲームデータセットをベンチマークして評価を行った。
論文 参考訳(メタデータ) (2024-05-27T22:15:23Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Networked Time Series Imputation via Position-aware Graph Enhanced
Variational Autoencoders [31.953958053709805]
我々は,変分オートエンコーダ(VAE)を利用して,ノード時系列の特徴とグラフ構造の両方に欠落する値を予測するPoGeVonという新しいモデルを設計する。
実験の結果,ベースライン上でのモデルの有効性が示された。
論文 参考訳(メタデータ) (2023-05-29T21:11:34Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Approximating DTW with a convolutional neural network on EEG data [9.409281517596396]
動的時間ラッピング(DTW)の高速かつ微分可能な近似法を提案する。
提案手法は,計算効率が向上した他のDTW主近似と同等以上の精度が得られることを示す。
論文 参考訳(メタデータ) (2023-01-30T13:27:47Z) - AER: Auto-Encoder with Regression for Time Series Anomaly Detection [12.418290128163882]
時系列データの異常検出は、様々な産業領域でますます一般的になっている。
最近の教師なし機械学習手法は、この問題に対処する上で顕著な進歩を遂げている。
本稿では,バニラオートエンコーダとLSTM回帰器を組み合わせたジョイントモデルであるAER(Auto-encoder with Regression)を提案する。
論文 参考訳(メタデータ) (2022-12-27T17:22:21Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
従来の手法では、データの時系列ダイナミクスと、異なるセンサーの特徴の関連性の両方をめったに利用していない、と我々は主張する。
我々はDynImpと呼ばれるモデルを提案し、特徴軸に沿って近接する隣人と異なる時間点の欠如を扱う。
本手法は, 関連センサのマルチモーダル性特性を活かし, 履歴時系列のダイナミックスから学習し, 極端に欠落した状態でデータを再構築することができることを示す。
論文 参考訳(メタデータ) (2022-09-26T21:59:14Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
GANを用いたSING(Self-attention based Time-Series Imputation Networks)を提案する。
我々は、時系列の潜在表現を学習するために、生成的対向ネットワークと双方向リカレントニューラルネットワークを利用する。
3つの実世界のデータセットによる実験結果から、STINGは既存の最先端手法よりも計算精度が優れていることが示された。
論文 参考訳(メタデータ) (2022-09-22T06:06:56Z) - Multi-scale Anomaly Detection for Big Time Series of Industrial Sensors [50.6434162489902]
そこで本研究では,自然にスムーズな時系列を復号・符号化する手法であるMissGANを提案する。
MissGANはラベルを必要としないし、通常のインスタンスのラベルだけを必要とするので、広く適用できます。
論文 参考訳(メタデータ) (2022-04-18T04:34:15Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。