Telling emissions apart in a multiphoton resonance: visualizing a
conditional evolution
- URL: http://arxiv.org/abs/2211.12144v2
- Date: Thu, 22 Dec 2022 12:51:32 GMT
- Title: Telling emissions apart in a multiphoton resonance: visualizing a
conditional evolution
- Authors: Th. K. Mavrogordatos
- Abstract summary: We find that the phase-space representation of the electromagnetic field inside a driven cavity strongly coupled to a two-level atom can be employed to distinguish photon emissions.
The emissions are told apart by means of the different quantum beats generated by the conditional states they prepare.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We find that the phase-space representation of the electromagnetic field
inside a driven cavity strongly coupled to a two-level atom can be employed to
distinguish photon emissions along a ladder of dressed states sustaining a
two-photon resonance. The emissions are told apart by means of the different
quantum beats generated by the conditional states they prepare. Sample quantum
trajectories explicitly reveal the difference in the transient due to the
initial condition, in a background set by the Jaynes-Cummings spectrum and
revealed by the strong-coupling limit. Their ensemble-averaged evolution is
tracked for a time period similar to that waited for the loss of a next photon
as the maximum non-exclusive probability, indicated by the peak of the
intensity correlation function.
Related papers
- Quantum-fluctuation asymmetry in multiphoton Jaynes-Cummings resonances [0.0]
We explore the statistical behavior of the light emanating from a coherently driven Jaynes-Cummings (JC) oscillator operating in the regime of multiphoton blockade.
We find that monitoring different quadratures of the cavity field in conditional homodyne detection affects the times waited between successive photon counter clicks''
Despite the fact that the steady-state cavity occupation is of the order of a photon, monitoring of the developing bimodality also impacts on the ratio between the emissions directed along the two decoherence channels.
arXiv Detail & Related papers (2024-05-22T12:48:59Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Two-photon emission in detuned resonance fluorescence [0.0]
We discuss two-photon correlations from the side peaks that are formed when a two-level system emitter is driven coherently.
We show that their combination leads to a neat picture compatible with perturbative two-photon scattering.
This should help to control, enhance and open new regimes of multiphoton emission.
arXiv Detail & Related papers (2022-10-07T17:59:38Z) - Visualizing the breakdown of quantum multimodality in coherently driven
light-matter interaction [0.0]
We show that the saturation of a multiphoton transition is accompanied by a gradual collapse of quantum multimodality.
We also reveal two coexistent quantum beats in the intensity correlation function of the forwards scattered photons.
arXiv Detail & Related papers (2022-06-22T16:31:39Z) - Quantum entanglement between excitons in two-dimensional materials [0.0]
The quantum entanglement between two excitons in two-dimensional materials, embedded in an optical microcavity, was investigated.
The energy eigenstates of a Jaynes-Cummings like Hamiltonian for two qubits coupled to a single cavity mode have been calculated.
arXiv Detail & Related papers (2021-12-06T14:17:03Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Coherence of resonant light-matter interaction in the strong-coupling
limit [0.0]
We derive analytical expressions for the spectrum and the intensity correlation function for photons scattered by the two-state atom coupled to the coherently driven cavity mode.
We increase the driving field amplitude and approach the critical point organizing a second-order dissipative quantum phase transition.
arXiv Detail & Related papers (2021-05-27T13:17:28Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Observing coherences with time-resolved photoemission [77.34726150561087]
We discuss the potential creation and measurement of coherences in both dispersive solids and qubit-like single levels using current generation time- and angle-resolved photoemission technology.
We show that in both cases, when both the pump and the probe overlap energetically with the coherent levels, that the time-resolved photoemission signal shows a beating pattern at the energy difference between the levels.
In the case of dispersive bands, this leads to momentum-dependent oscillations, which may be used to map out small energy scales in the band structure.
arXiv Detail & Related papers (2020-05-18T18:00:02Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.