論文の概要: Event Transformer+. A multi-purpose solution for efficient event data
processing
- arxiv url: http://arxiv.org/abs/2211.12222v1
- Date: Tue, 22 Nov 2022 12:28:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 18:21:34.554501
- Title: Event Transformer+. A multi-purpose solution for efficient event data
processing
- Title(参考訳): イベントトランスフォーマー+。
効率的なイベントデータ処理のための多目的ソリューション
- Authors: Alberto Sabater, Luis Montesano, Ana C. Murillo
- Abstract要約: イベントカメラは、高時間分解能と高ダイナミックレンジでスパース照明変化を記録する。
現在の手法は特定のイベントデータ特性を無視することが多く、汎用的だが計算コストのかかるアルゴリズムの開発に繋がる。
より洗練されたパッチベースのイベント表現と、より堅牢なバックボーンにより、evtPrev EvTを改善したEvent Transformer+を提案する。
- 参考スコア(独自算出の注目度): 9.669942356088377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event cameras record sparse illumination changes with high temporal
resolution and high dynamic range. Thanks to their sparse recording and low
consumption, they are increasingly used in applications such as AR/VR and
autonomous driving. Current top-performing methods often ignore specific
event-data properties, leading to the development of generic but
computationally expensive algorithms, while event-aware methods do not perform
as well. We propose Event Transformer+, that improves our seminal work evtprev
EvT with a refined patch-based event representation and a more robust backbone
to achieve more accurate results, while still benefiting from event-data
sparsity to increase its efficiency. Additionally, we show how our system can
work with different data modalities and propose specific output heads, for
event-stream predictions (i.e. action recognition) and per-pixel predictions
(dense depth estimation). Evaluation results show better performance to the
state-of-the-art while requiring minimal computation resources, both on GPU and
CPU.
- Abstract(参考訳): イベントカメラは、高時間分解能と高ダイナミックレンジでスパース照明変化を記録する。
少ない記録と低消費のため、AR/VRや自動運転といったアプリケーションでの利用が増えている。
現在のトップパフォーマンスメソッドは、特定のイベントデータプロパティを無視することが多いため、汎用的だが計算コストの高いアルゴリズムの開発に繋がる。
私たちは、より正確な結果を得るために、より洗練されたパッチベースのイベント表現とより堅牢なバックボーンを備えたevtprev evtの独創的な作業を改善するイベントtransformer+を提案します。
さらに,我々のシステムは,異なるデータモダリティで動作し,イベントストリーム予測(アクション認識)や画素ごとの予測(深度推定)のために,特定の出力ヘッドを提案する。
評価結果は、gpuとcpuの両方で最小の計算リソースを必要とする一方で、最先端の性能を示す。
関連論文リスト
- Event-to-Video Conversion for Overhead Object Detection [7.744259147081667]
イベントカメラは、特にオブジェクト検出などの複雑なタスクにおいて、下流の画像処理を複雑にする。
本稿では,高密度イベント表現とそれに対応するRGBフレームの間には,大きな差があることを述べる。
このギャップを埋めるために、イベントストリームをグレースケールのビデオに変換するイベント間変換モデルを適用する。
論文 参考訳(メタデータ) (2024-02-09T22:07:39Z) - Implicit Event-RGBD Neural SLAM [54.74363487009845]
神経性SLAMは近年顕著な進歩を遂げている。
既存の手法は、非理想的なシナリオにおいて重大な課題に直面します。
本稿では,最初のイベントRGBD暗黙的ニューラルSLAMフレームワークであるEN-SLAMを提案する。
論文 参考訳(メタデータ) (2023-11-18T08:48:58Z) - EvDNeRF: Reconstructing Event Data with Dynamic Neural Radiance Fields [80.94515892378053]
EvDNeRFは、イベントデータを生成し、イベントベースの動的NeRFをトレーニングするためのパイプラインである。
NeRFは幾何学ベースの学習可能なレンダリングを提供するが、イベントの以前の作業は静的なシーンの再構築のみを考慮していた。
各種イベントのバッチサイズをトレーニングすることにより、微細な時間解像度でイベントのテスト時間予測を改善することができることを示す。
論文 参考訳(メタデータ) (2023-10-03T21:08:41Z) - Graph-based Asynchronous Event Processing for Rapid Object Recognition [59.112755601918074]
イベントカメラは、各イベントがピクセル位置、トリガ時間、明るさの極性が変化するような非同期イベントストリームをキャプチャする。
イベントカメラのための新しいグラフベースのフレームワーク、SlideGCNを紹介した。
当社のアプローチでは、データをイベント単位で効率的に処理し、内部でグラフの構造を維持しながら、イベントデータの低レイテンシ特性を解放することが可能です。
論文 参考訳(メタデータ) (2023-08-28T08:59:57Z) - EventMix: An Efficient Augmentation Strategy for Event-Based Data [4.8416725611508244]
イベントカメラは、高ダイナミックレンジと低エネルギーのイベントストリームデータを提供することができる。
スケールは従来のフレームベースのデータよりも小さく、入手が難しい。
本稿では,イベントストリームデータに対する効率的なデータ拡張戦略であるEventMixを提案する。
論文 参考訳(メタデータ) (2022-05-24T13:07:33Z) - Event Transformer. A sparse-aware solution for efficient event data
processing [9.669942356088377]
Event Transformer(EvT)は、イベントデータプロパティを効果的に活用して、極めて効率的かつ正確なフレームワークである。
EvTは、アクションとジェスチャー認識のためのさまざまなイベントベースのベンチマークで評価される。
結果は、計算リソースを著しく少なくしながら、最先端の精度よりも優れているか同等の精度を示す。
論文 参考訳(メタデータ) (2022-04-07T10:49:17Z) - Asynchronous Optimisation for Event-based Visual Odometry [53.59879499700895]
イベントカメラは、低レイテンシと高ダイナミックレンジのために、ロボット知覚の新しい可能性を開く。
イベントベースビジュアル・オドメトリー(VO)に焦点をあてる
動作最適化のバックエンドとして非同期構造を提案する。
論文 参考訳(メタデータ) (2022-03-02T11:28:47Z) - Time-Ordered Recent Event (TORE) Volumes for Event Cameras [21.419206807872797]
イベントカメラは、非常に低遅延で広いダイナミックレンジの高速イメージングを可能にするエキサイティングで新しいセンサーモダリティです。
ほとんどの機械学習アーキテクチャは、イベントカメラから生成されたスパースデータを直接扱うように設計されていない。
本稿では,時系列最近のイベント(TORE)ボリュームというイベント表現を詳述する。
TOREボリュームは、最小限の情報損失で生のスパイクタイミング情報をコンパクトに格納するように設計されています。
論文 参考訳(メタデータ) (2021-03-10T15:03:38Z) - Dynamic Resource-aware Corner Detection for Bio-inspired Vision Sensors [0.9988653233188148]
本稿では,組込みシステム上でリアルタイムにイベントストリームから非同期コーナーを検出するアルゴリズムを提案する。
提案アルゴリズムは,近隣住民の中から最適なコーナー候補を選択することができ,平均実行時間を59パーセント削減することができる。
論文 参考訳(メタデータ) (2020-10-29T12:01:33Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
イベントカメラは、強度フレームではなく、非同期イベントのストリームの形式で輝度を変化させる。
最近の学習に基づくアプローチは、単眼深度予測のようなイベントベースのデータに適用されている。
本稿では,この課題を解決するための繰り返しアーキテクチャを提案し,標準フィードフォワード法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-16T12:36:23Z) - Unsupervised Feature Learning for Event Data: Direct vs Inverse Problem
Formulation [53.850686395708905]
イベントベースのカメラは、ピクセルごとの明るさ変化の非同期ストリームを記録する。
本稿では,イベントデータからの表現学習のための単一層アーキテクチャに焦点を当てる。
我々は,最先端手法と比較して,認識精度が最大9%向上したことを示す。
論文 参考訳(メタデータ) (2020-09-23T10:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。