論文の概要: Relation-dependent Contrastive Learning with Cluster Sampling for
Inductive Relation Prediction
- arxiv url: http://arxiv.org/abs/2211.12266v1
- Date: Tue, 22 Nov 2022 13:30:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 16:22:51.630509
- Title: Relation-dependent Contrastive Learning with Cluster Sampling for
Inductive Relation Prediction
- Title(参考訳): 帰納的関係予測のためのクラスタサンプリングによる関係依存型コントラスト学習
- Authors: Jianfeng Wu, Sijie Mai, Haifeng Hu
- Abstract要約: 帰納的関係予測のための関係依存型コントラスト学習(ReCoLe)を導入する。
GNNベースのエンコーダはコントラスト学習によって最適化され、ロングテール関係における良好な性能が保証される。
実験結果から、ReCoLeは一般的に使用される帰納的データセット上で最先端の手法より優れていることが示唆された。
- 参考スコア(独自算出の注目度): 30.404149577013595
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Relation prediction is a task designed for knowledge graph completion which
aims to predict missing relationships between entities. Recent subgraph-based
models for inductive relation prediction have received increasing attention,
which can predict relation for unseen entities based on the extracted subgraph
surrounding the candidate triplet. However, they are not completely inductive
because of their disability of predicting unseen relations. Moreover, they fail
to pay sufficient attention to the role of relation as they only depend on the
model to learn parameterized relation embedding, which leads to inaccurate
prediction on long-tail relations. In this paper, we introduce
Relation-dependent Contrastive Learning (ReCoLe) for inductive relation
prediction, which adapts contrastive learning with a novel sampling method
based on clustering algorithm to enhance the role of relation and improve the
generalization ability to unseen relations. Instead of directly learning
embedding for relations, ReCoLe allocates a pre-trained GNN-based encoder to
each relation to strengthen the influence of relation. The GNN-based encoder is
optimized by contrastive learning, which ensures satisfactory performance on
long-tail relations. In addition, the cluster sampling method equips ReCoLe
with the ability to handle both unseen relations and entities. Experimental
results suggest that ReCoLe outperforms state-of-the-art methods on commonly
used inductive datasets.
- Abstract(参考訳): 関係予測は、エンティティ間の欠落関係を予測することを目的とした、知識グラフ補完のために設計されたタスクである。
帰納的関係予測のための近年のサブグラフベースモデルに注目が集まっており、候補三重項を取り巻く抽出されたサブグラフに基づいて、未知の実体の関係を予測できる。
しかし、不明瞭な関係を予測できないため、完全に帰納的ではない。
さらに、パラメータ化された関係埋め込みを学習するモデルにのみ依存するため、関係の役割に十分な注意を払わないため、長い尾関係の予測が不正確になる。
本稿では,相関学習をクラスタリングアルゴリズムに基づく新しいサンプリング法に適応させた帰納的関係予測のための関係依存的コントラスト学習(recole)を提案する。
ReCoLeは関係の埋め込みを直接学習する代わりに、学習済みのGNNベースのエンコーダを各関係に割り当て、関係の影響を強化する。
GNNベースのエンコーダはコントラスト学習によって最適化され、ロングテール関係における良好な性能が保証される。
さらに、クラスタサンプリング手法はReCoLeに、目に見えない関係とエンティティの両方を扱う能力を備えている。
実験の結果、recoleは一般的に使用されるインダクティブデータセットで最先端のメソッドよりも優れていることが示唆された。
関連論文リスト
- Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
グラフニューラルネットワーク(GNN)は、モデル精度を高めるために帰納バイアスとしてリレーショナル情報を使用する。
課題関連関係が不明なため,下流予測タスクを解きながら学習するためのグラフ構造学習手法が提案されている。
論文 参考訳(メタデータ) (2024-05-30T10:49:22Z) - Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction [121.65152276851619]
関係性間の意味的相関は本質的にエッジレベルとエンティティ非依存であることを示す。
本研究では,関係関係のトポロジ・アウェア・コレレーションをモデル化するための新しいサブグラフベース手法,TACOを提案する。
RCNのポテンシャルをさらに活用するために, 完全コモンニアインダストリアルサブグラフを提案する。
論文 参考訳(メタデータ) (2023-09-20T08:11:58Z) - Document-level Relation Extraction with Relation Correlations [15.997345900917058]
文書レベルの関係抽出は,長期問題と複数ラベル問題という,見落とされた2つの課題に直面している。
関係の共起相関を解析し,DocREタスクに初めて導入する。
論文 参考訳(メタデータ) (2022-12-20T11:17:52Z) - A Probit Tensor Factorization Model For Relational Learning [31.613211987639296]
本稿では,従来のテンソル因数分解モデルから計算効率を継承する,プロビットリンク付きバイナリテンソル因数分解モデルを提案する。
提案手法は,予測精度と解釈可能性の両面で優位性を示す。
論文 参考訳(メタデータ) (2021-11-06T19:23:07Z) - Link Prediction on N-ary Relational Data Based on Relatedness Evaluation [61.61555159755858]
我々は,n-aryリレーショナルデータ上でリンク予測を行うNaLPという手法を提案する。
各 n 個の関係事実を、その役割と役割と値のペアの集合として表現する。
実験結果は,提案手法の有効性と有用性を検証した。
論文 参考訳(メタデータ) (2021-04-21T09:06:54Z) - Topology-Aware Correlations Between Relations for Inductive Link
Prediction in Knowledge Graphs [41.38172189254483]
TACTは、2つの関係間の意味的相関がそれらのトポロジカルナレッジグラフと非常に相関しているという観測に触発される。
関係対を複数のトポロジ的パターンに分類し、相関ネットワーク(RCN)の構造を提案し、帰納的リンク予測における異なるパターンの重要性を学習する。
実験では、TACTが関係間のセマンティック相関を効果的にモデル化し、ベンチマークデータセット上の既存の最先端の方法を大幅に上回ることが示されています。
論文 参考訳(メタデータ) (2021-03-05T13:00:10Z) - Generalized Relation Learning with Semantic Correlation Awareness for
Link Prediction [29.23338194883254]
本稿では,上記の2つの問題に対処する汎用関係学習フレームワークを提案する。
grlを用いた訓練により、ベクトル空間における意味的類似関係の密接性と類似関係の識別性が向上する。
論文 参考訳(メタデータ) (2020-12-22T12:22:03Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training [49.9995628166064]
本稿では,2つのメカニズムを備えたモデルであるCTEGを提案する。
一方、注意を誘導するEGA機構を導入し、混乱を引き起こす情報をフィルタリングする。
一方,コンフュージョン・アウェア・トレーニング(CAT)法は,関係の識別を明示的に学習するために提案されている。
論文 参考訳(メタデータ) (2020-10-21T11:07:53Z) - Improving Long-Tail Relation Extraction with Collaborating
Relation-Augmented Attention [63.26288066935098]
本稿では,ニューラルネットワーク,コラボレーティング・リレーショナル・アテンション(CoRA)を提案する。
一般的なベンチマークデータセットNYTの実験では、提案されたCoRAは、最先端のパフォーマンスを大きなマージンで改善する。
論文 参考訳(メタデータ) (2020-10-08T05:34:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。