論文の概要: GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild
- arxiv url: http://arxiv.org/abs/2211.12352v2
- Date: Wed, 23 Nov 2022 10:12:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 13:29:08.745527
- Title: GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild
- Title(参考訳): GlowGAN:野生のLDR画像からのHDR画像の教師なし学習
- Authors: Chao Wang, Ana Serrano, Xingang Pan, Bin Chen, Hans-Peter Seidel,
Christian Theobalt, Karol Myszkowski, Thomas Leimkuehler
- Abstract要約: そこで本研究では,HDR画像の生成モデルを構築するための第1の手法について述べる。
鍵となる考え方は、GAN(Generative Adversarial Network)を訓練して、様々な露光下でLDRに投影された場合、実際のLDR画像と区別できないHDR画像を生成することである。
実験の結果,GlowGANはランドスケープ,雷,窓など多くの難題において,光現実的HDR画像を合成できることがわかった。
- 参考スコア(独自算出の注目度): 74.52723408793648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most in-the-wild images are stored in Low Dynamic Range (LDR) form, serving
as a partial observation of the High Dynamic Range (HDR) visual world. Despite
limited dynamic range, these LDR images are often captured with different
exposures, implicitly containing information about the underlying HDR image
distribution. Inspired by this intuition, in this work we present, to the best
of our knowledge, the first method for learning a generative model of HDR
images from in-the-wild LDR image collections in a fully unsupervised manner.
The key idea is to train a generative adversarial network (GAN) to generate HDR
images which, when projected to LDR under various exposures, are
indistinguishable from real LDR images. The projection from HDR to LDR is
achieved via a camera model that captures the stochasticity in exposure and
camera response function. Experiments show that our method GlowGAN can
synthesize photorealistic HDR images in many challenging cases such as
landscapes, lightning, or windows, where previous supervised generative models
produce overexposed images. We further demonstrate the new application of
unsupervised inverse tone mapping (ITM) enabled by GlowGAN. Our ITM method does
not need HDR images or paired multi-exposure images for training, yet it
reconstructs more plausible information for overexposed regions than
state-of-the-art supervised learning models trained on such data.
- Abstract(参考訳): ほとんどの画像は低ダイナミックレンジ(LDR)形式で保存されており、高ダイナミックレンジ(HDR)視覚世界を部分的に観察する役割を果たしている。
ダイナミックレンジは限られているが、これらのLDR画像は、しばしば異なる露出で撮影され、基盤となるHDR画像の分布に関する情報を暗黙的に含んでいる。
この直観に触発されて、本研究では、我々の知識を最大限に活用し、野生のldr画像コレクションからhdr画像の生成モデルを完全に教師なしで学習する最初の方法を紹介します。
鍵となる考え方は、GAN(Generative Adversarial Network)を訓練して、様々な露光下でLDRに投影された場合、実際のLDR画像と区別できないHDR画像を生成することである。
HDRからLDRへの投影は、露出の確率性とカメラ応答関数をキャプチャするカメラモデルによって達成される。
実験により,従来の教師付き生成モデルが過剰に露出した画像を生成する風景,雷,窓など,多くの課題において,glowganがフォトリアリスティックなhdr画像を合成できることが判明した。
さらに,GlowGANによって実現された教師なし逆トーンマッピング(ITM)の新たな応用を実証する。
ITM法では,HDR画像やマルチ露光画像は必要としないが,これらのデータに基づいて訓練された最先端の教師あり学習モデルよりも,過剰に露光した領域の情報を再構成する。
関連論文リスト
- Exposure Diffusion: HDR Image Generation by Consistent LDR denoising [29.45922922270381]
我々は、伝統的に「ブラケット」と呼ばれるLDR画像の集合を融合させ、単一のHDR画像を生成するHDR画像キャプチャー文献からインスピレーションを得る。
有効なHDR結果を生成する複数のLDRブラケットを生成するために,複数の復調処理を運用する。
論文 参考訳(メタデータ) (2024-05-23T08:24:22Z) - Pano-NeRF: Synthesizing High Dynamic Range Novel Views with Geometry
from Sparse Low Dynamic Range Panoramic Images [82.1477261107279]
そこで本研究では,Sparse LDRパノラマ画像からの照射場を用いて,忠実な幾何復元のための観測回数を増やすことを提案する。
実験により、照射場は幾何復元とHDR再構成の両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-12-26T08:10:22Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Selfは、訓練中にダイナミックなマルチ露光画像のみを必要とする自己教師型再構成手法である。
Selfは最先端の自己管理手法に対して優れた結果を出し、教師付き手法に匹敵するパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-10-03T07:10:49Z) - Self-supervised HDR Imaging from Motion and Exposure Cues [14.57046548797279]
本稿では,学習可能なHDR推定のための新たな自己教師型アプローチを提案する。
実験の結果,提案手法を用いて訓練したHDRモデルは,全監督下で訓練したモデルと性能の競争力を発揮することがわかった。
論文 参考訳(メタデータ) (2022-03-23T10:22:03Z) - HDR-NeRF: High Dynamic Range Neural Radiance Fields [70.80920996881113]
我々は、低ダイナミックレンジ(LDR)ビューの集合からHDR放射界を異なる露光で復元するために、高ダイナミックレンジニューラルレイディアンス場(-NeRF)を提案する。
異なる露出下で、新しいHDRビューと新しいLDRビューの両方を生成することができる。
論文 参考訳(メタデータ) (2021-11-29T11:06:39Z) - HDR-cGAN: Single LDR to HDR Image Translation using Conditional GAN [24.299931323012757]
低ダイナミックレンジ(LDR)カメラは、現実世界のシーンの広いダイナミックレンジを表現できない。
本研究では,HDR画像の再構成を行いながら,飽和領域の詳細を復元する深層学習手法を提案する。
本稿では,HDR-REALデータセットとHDR-SYNTHデータセットに対して,エンドツーエンドでトレーニングされた新しい条件付きGAN(cGAN)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-04T18:50:35Z) - A Two-stage Deep Network for High Dynamic Range Image Reconstruction [0.883717274344425]
本研究では,新しい2段階深層ネットワークを提案することにより,シングルショットLDRからHDRマッピングへの課題に取り組む。
提案手法は,カメラ応答機能(CRF)や露光設定など,ハードウェア情報を知ることなくHDR画像の再構築を図ることを目的とする。
論文 参考訳(メタデータ) (2021-04-19T15:19:17Z) - Beyond Visual Attractiveness: Physically Plausible Single Image HDR
Reconstruction for Spherical Panoramas [60.24132321381606]
我々は,単発hdr再構成フレームワークに物理的照度制約を導入する。
本手法は,視覚に訴えるだけでなく,物理的に妥当なHDRを生成することができる。
論文 参考訳(メタデータ) (2021-03-24T01:51:19Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
マルチ露光LDR画像からHDR画像を合成するための新しいGANモデルHDR-GANを提案する。
本手法は,敵対学習を取り入れることで,欠落したコンテンツのある領域に忠実な情報を生成することができる。
論文 参考訳(メタデータ) (2020-07-03T11:42:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。