論文の概要: SimVPv2: Towards Simple yet Powerful Spatiotemporal Predictive Learning
- arxiv url: http://arxiv.org/abs/2211.12509v4
- Date: Thu, 12 Dec 2024 08:54:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 17:01:15.461966
- Title: SimVPv2: Towards Simple yet Powerful Spatiotemporal Predictive Learning
- Title(参考訳): SimVPv2: シンプルかつパワフルな時空間予測学習を目指して
- Authors: Cheng Tan, Zhangyang Gao, Siyuan Li, Stan Z. Li,
- Abstract要約: 空間的・時間的モデリングにおけるUnetアーキテクチャの必要性を解消する合理化モデルであるSimVPv2を提案する。
SimVPv2はモデルアーキテクチャを単純化するだけでなく、性能と計算効率も改善する。
標準のMoving MNISTベンチマークでは、SimVPv2は、FLOPが少なく、トレーニング時間の半分、推論効率が60%速く、SimVPよりも優れたパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 61.419914155985886
- License:
- Abstract: Recent years have witnessed remarkable advances in spatiotemporal predictive learning, with methods incorporating auxiliary inputs, complex neural architectures, and sophisticated training strategies. While SimVP has introduced a simpler, CNN-based baseline for this task, it still relies on heavy Unet-like architectures for spatial and temporal modeling, which still suffers from high complexity and computational overhead. In this paper, we propose SimVPv2, a streamlined model that eliminates the need for Unet architectures and demonstrates that plain stacks of convolutional layers, enhanced with an efficient Gated Spatiotemporal Attention mechanism, can deliver state-of-the-art performance. SimVPv2 not only simplifies the model architecture but also improves both performance and computational efficiency. On the standard Moving MNIST benchmark, SimVPv2 achieves superior performance compared to SimVP, with fewer FLOPs, about half the training time, and 60% faster inference efficiency. Extensive experiments across eight diverse datasets, including real-world tasks such as traffic forecasting and climate prediction, further demonstrate that SimVPv2 offers a powerful yet straightforward solution, achieving robust generalization across various spatiotemporal learning scenarios. We believe the proposed SimVPv2 can serve as a solid baseline to benefit the spatiotemporal predictive learning community.
- Abstract(参考訳): 近年では、補助的な入力、複雑な神経アーキテクチャ、洗練された訓練戦略を組み込んだ時空間予測学習が目覚ましい進歩を遂げている。
SimVPは、このタスクのためによりシンプルなCNNベースのベースラインを導入したが、それでも空間的および時間的モデリングのために重いUnetのようなアーキテクチャに依存しており、それでも高い複雑さと計算オーバーヘッドに悩まされている。
本稿では,Unetアーキテクチャの必要性を排除し,効率的なGated Spatiotemporal Attention機構によって拡張された畳み込みレイヤのプレーンスタックが,最先端のパフォーマンスを実現することができることを示す。
SimVPv2はモデルアーキテクチャを単純化するだけでなく、性能と計算効率も改善する。
標準のMoving MNISTベンチマークでは、SimVPv2は、FLOPが少なく、トレーニング時間が約半分、推論効率が60%速く、SimVPよりも優れたパフォーマンスを実現している。
交通予測や気候予測などの現実的なタスクを含む8つの多様なデータセットにわたる大規模な実験は、SimVPv2が強力だが簡単なソリューションを提供し、様々な時空間学習シナリオで堅牢な一般化を実現することを証明している。
提案したSimVPv2は、時空間予測学習コミュニティの恩恵を受けるための確かなベースラインとして機能すると考えている。
関連論文リスト
- Tao: Re-Thinking DL-based Microarchitecture Simulation [8.501776613988484]
既存のマイクロアーキテクチャシミュレータは、異なる側面で優れ、不足している。
ディープラーニング(DL)ベースのシミュレーションは驚くほど高速で、精度は極めて高いが、適切な低レベルのマイクロアーキテクチャのパフォーマンス指標を提供することができない。
本稿では,3つの主要な貢献により,DLに基づくシミュレーションを再設計するTAOを紹介する。
論文 参考訳(メタデータ) (2024-04-16T21:45:10Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
データからロボットダイナミクスを学習するためのSIM-FSVGDを提案する。
我々は、ニューラルネットワークモデルのトレーニングを規則化するために、低忠実度物理プリエンスを使用します。
高性能RCレースカーシステムにおけるSIM-to-realギャップのブリッジ化におけるSIM-FSVGDの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T11:29:32Z) - Predicting Traffic Flow with Federated Learning and Graph Neural with Asynchronous Computations Network [0.0]
我々はFLAGCN(Federated Learning and Asynchronous Graph Convolutional Networks)と呼ばれる新しいディープラーニング手法を提案する。
本フレームワークでは,リアルタイムトラフィックフロー予測の精度と効率を高めるために,非同期グラフ畳み込みネットワークとフェデレーション学習の原理を取り入れている。
論文 参考訳(メタデータ) (2024-01-05T09:36:42Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Improving Sample Efficiency of Value Based Models Using Attention and
Vision Transformers [52.30336730712544]
性能を犠牲にすることなくサンプル効率を向上させることを目的とした深層強化学習アーキテクチャを提案する。
状態表現の特徴マップ上の自己注意機構を変換器を用いて学習する視覚的注意モデルを提案する。
我々は,このアーキテクチャがいくつかのAtari環境におけるサンプルの複雑さを向上すると同時に,いくつかのゲームにおいて優れたパフォーマンスを実現することを実証的に実証した。
論文 参考訳(メタデータ) (2022-02-01T19:03:03Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Multi-objective Neural Architecture Search with Almost No Training [9.93048700248444]
本稿ではRWE(Random-Weight Evaluation)という,ネットワークアーキテクチャの性能を迅速に評価する手法を提案する。
RWEは、アーキテクチャを評価するための計算コストを数時間から秒に短縮する。
進化的多目的アルゴリズムに統合されると、RWEはCIFAR-10上で2時間以内で1枚のGPUカードを検索し、最先端の性能を持つ効率的なアーキテクチャの集合を得る。
論文 参考訳(メタデータ) (2020-11-27T07:39:17Z) - Federated Transfer Learning with Dynamic Gradient Aggregation [27.42998421786922]
本稿では,音響モデル学習のためのフェデレートラーニング(FL)シミュレーションプラットフォームを提案する。
提案するFLプラットフォームは,モジュール設計を取り入れたさまざまなタスクをサポートすることができる。
これは、収束速度と全体的なモデル性能の両方において、分散トレーニングの黄金標準よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-06T04:29:01Z) - STONNE: A Detailed Architectural Simulator for Flexible Neural Network
Accelerators [5.326345912766044]
STONNEはサイクル精度が高く、高度にモジュール化され、高度に拡張可能なシミュレーションフレームワークである。
一般に公開されているBSV符号化MAERIの実装の性能結果にどのように近づくかを示す。
論文 参考訳(メタデータ) (2020-06-10T19:20:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。