FRE: A Fast Method For Anomaly Detection And Segmentation
- URL: http://arxiv.org/abs/2211.12650v1
- Date: Wed, 23 Nov 2022 01:03:20 GMT
- Title: FRE: A Fast Method For Anomaly Detection And Segmentation
- Authors: Ibrahima Ndiour and Nilesh Ahuja and Utku Genc and Omesh Tickoo
- Abstract summary: This paper presents a principled approach for solving the visual anomaly detection and segmentation problem.
We propose the application of linear statistical dimensionality reduction techniques on the intermediate features produced by a pretrained DNN on the training data.
We show that the emphfeature reconstruction error (FRE), which is the $ell$-norm of the difference between the original feature in the high-dimensional space and the pre-image of its low-dimensional reduced embedding, is extremely effective for anomaly detection.
- Score: 5.0468312081378475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a fast and principled approach for solving the visual
anomaly detection and segmentation problem. In this setup, we have access to
only anomaly-free training data and want to detect and identify anomalies of an
arbitrary nature on test data. We propose the application of linear statistical
dimensionality reduction techniques on the intermediate features produced by a
pretrained DNN on the training data, in order to capture the low-dimensional
subspace truly spanned by said features. We show that the \emph{feature
reconstruction error} (FRE), which is the $\ell_2$-norm of the difference
between the original feature in the high-dimensional space and the pre-image of
its low-dimensional reduced embedding, is extremely effective for anomaly
detection. Further, using the same feature reconstruction error concept on
intermediate convolutional layers, we derive FRE maps that provide pixel-level
spatial localization of the anomalies in the image (i.e. segmentation).
Experiments using standard anomaly detection datasets and DNN architectures
demonstrate that our method matches or exceeds best-in-class quality
performance, but at a fraction of the computational and memory cost required by
the state of the art. It can be trained and run very efficiently, even on a
traditional CPU.
Related papers
- Weakly Supervised Video Anomaly Detection and Localization with Spatio-Temporal Prompts [57.01985221057047]
This paper introduces a novel method that learnstemporal prompt embeddings for weakly supervised video anomaly detection and localization (WSVADL) based on pre-trained vision-language models (VLMs)
Our method achieves state-of-theart performance on three public benchmarks for the WSVADL task.
arXiv Detail & Related papers (2024-08-12T03:31:29Z) - Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
Anomaly detection in dynamic graphs presents a significant challenge due to the temporal evolution of graph structures and attributes.
We introduce a novel spatial- temporal memories-enhanced graph autoencoder (STRIPE)
STRIPE significantly outperforms existing methods with 5.8% improvement in AUC scores and 4.62X faster in training time.
arXiv Detail & Related papers (2024-03-14T02:26:10Z) - Continuous Memory Representation for Anomaly Detection [24.58611060347548]
CRAD is a novel anomaly detection method for representing normal features within a "continuous" memory.
In an evaluation using the MVTec AD dataset, CRAD significantly outperforms the previous state-of-the-art method by reducing 65.0% of the error for multi-class unified anomaly detection.
arXiv Detail & Related papers (2024-02-28T12:38:44Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - CAINNFlow: Convolutional block Attention modules and Invertible Neural
Networks Flow for anomaly detection and localization tasks [28.835943674247346]
In this study, we design a complex function model with alternating CBAM embedded in a stacked $3times3$ full convolution, which is able to retain and effectively extract spatial structure information.
Experiments show that CAINNFlow achieves advanced levels of accuracy and inference efficiency based on CNN and Transformer backbone networks as feature extractors.
arXiv Detail & Related papers (2022-06-04T13:45:08Z) - Subspace Modeling for Fast Out-Of-Distribution and Anomaly Detection [5.672132510411465]
This paper presents a principled approach for detecting anomalous and out-of-distribution (OOD) samples in deep neural networks (DNN)
We propose the application of linear statistical dimensionality reduction techniques on the semantic features produced by a DNN.
We show that the "feature reconstruction error" (FRE), which is the $ell$-norm of the difference between the original feature in the high-dimensional space and the pre-image of its low-dimensional reduced embedding, is highly effective for OOD and anomaly detection.
arXiv Detail & Related papers (2022-03-20T00:55:20Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Learning Memory-guided Normality for Anomaly Detection [33.77435699029528]
We present an unsupervised learning approach to anomaly detection that considers the diversity of normal patterns explicitly.
We also present novel feature compactness and separateness losses to train the memory, boosting the discriminative power of both memory items and deeply learned features from normal data.
arXiv Detail & Related papers (2020-03-30T05:30:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.