Continuous Memory Representation for Anomaly Detection
- URL: http://arxiv.org/abs/2402.18293v3
- Date: Wed, 24 Jul 2024 04:43:30 GMT
- Title: Continuous Memory Representation for Anomaly Detection
- Authors: Joo Chan Lee, Taejune Kim, Eunbyung Park, Simon S. Woo, Jong Hwan Ko,
- Abstract summary: CRAD is a novel anomaly detection method for representing normal features within a "continuous" memory.
In an evaluation using the MVTec AD dataset, CRAD significantly outperforms the previous state-of-the-art method by reducing 65.0% of the error for multi-class unified anomaly detection.
- Score: 24.58611060347548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There have been significant advancements in anomaly detection in an unsupervised manner, where only normal images are available for training. Several recent methods aim to detect anomalies based on a memory, comparing or reconstructing the input with directly stored normal features (or trained features with normal images). However, such memory-based approaches operate on a discrete feature space implemented by the nearest neighbor or attention mechanism, suffering from poor generalization or an identity shortcut issue outputting the same as input, respectively. Furthermore, the majority of existing methods are designed to detect single-class anomalies, resulting in unsatisfactory performance when presented with multiple classes of objects. To tackle all of the above challenges, we propose CRAD, a novel anomaly detection method for representing normal features within a "continuous" memory, enabled by transforming spatial features into coordinates and mapping them to continuous grids. Furthermore, we carefully design the grids tailored for anomaly detection, representing both local and global normal features and fusing them effectively. Our extensive experiments demonstrate that CRAD successfully generalizes the normal features and mitigates the identity shortcut, furthermore, CRAD effectively handles diverse classes in a single model thanks to the high-granularity continuous representation. In an evaluation using the MVTec AD dataset, CRAD significantly outperforms the previous state-of-the-art method by reducing 65.0% of the error for multi-class unified anomaly detection. The project page is available at https://tae-mo.github.io/crad/.
Related papers
- Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - UniFormaly: Towards Task-Agnostic Unified Framework for Visual Anomaly
Detection [6.260747047974035]
We present UniFormaly, a universal and powerful anomaly detection framework.
We emphasize the necessity of our off-the-shelf approach by pointing out a suboptimal issue in online encoder-based methods.
UniFormaly achieves outstanding results on various tasks and datasets.
arXiv Detail & Related papers (2023-07-24T06:04:12Z) - FRE: A Fast Method For Anomaly Detection And Segmentation [5.0468312081378475]
This paper presents a principled approach for solving the visual anomaly detection and segmentation problem.
We propose the application of linear statistical dimensionality reduction techniques on the intermediate features produced by a pretrained DNN on the training data.
We show that the emphfeature reconstruction error (FRE), which is the $ell$-norm of the difference between the original feature in the high-dimensional space and the pre-image of its low-dimensional reduced embedding, is extremely effective for anomaly detection.
arXiv Detail & Related papers (2022-11-23T01:03:20Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Clear Memory-Augmented Auto-Encoder for Surface Defect Detection [10.829080460965478]
We propose a clear memory-augmented auto-encoder to repair abnormal foregrounds and preserve clear backgrounds.
A general artificial anomaly generation algorithm is proposed to simulate anomalies that are as realistic and feature-rich as possible.
At last, we propose a novel multi scale feature residual detection method for defect segmentation.
arXiv Detail & Related papers (2022-08-08T02:39:03Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
We propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block.
Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field.
We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video.
arXiv Detail & Related papers (2021-11-17T13:30:31Z) - MLF-SC: Incorporating multi-layer features to sparse coding for anomaly
detection [2.2276675054266395]
Anomalies in images occur in various scales from a small hole on a carpet to a large stain.
One of the widely used anomaly detection methods, sparse coding, has an issue in dealing with anomalies that are out of the patch size employed to sparsely represent images.
We propose to incorporate multi-scale features to sparse coding and improve the performance of anomaly detection.
arXiv Detail & Related papers (2021-04-09T10:20:34Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Memory Augmented Generative Adversarial Networks for Anomaly Detection [12.341523221155708]
Memory Augmented Generative Adrial Networks (MEMGAN) interacts with a memory module for both the encoding and generation processes.
Our algorithm is such that most of the textitencoded normal data are inside the convex hull of the memory units, while the abnormal data are isolated outside.
Decoded memory units in MEMGAN are more interpretable and disentangled than previous methods, which further demonstrates the effectiveness of the memory mechanism.
arXiv Detail & Related papers (2020-02-07T08:46:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.