論文の概要: Rega-Net:Retina Gabor Attention for Deep Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2211.12698v1
- Date: Wed, 23 Nov 2022 04:24:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 15:15:19.379997
- Title: Rega-Net:Retina Gabor Attention for Deep Convolutional Neural Networks
- Title(参考訳): 深部畳み込みニューラルネットワークのためのRega-Net:Retina Gaborアテンション
- Authors: Chun Bao, Jie Cao, Yaqian Ning, Yang Cheng, Qun Hao
- Abstract要約: 本稿では,レガネット(Rega-net)という新しいアテンション手法を提案する。
ヒト網膜のメカニズムにインスパイアされた我々は、ヒト網膜の非一様分布構造に類似した畳み込みカーネルを設計する。
- 参考スコア(独自算出の注目度): 8.068451210598676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extensive research works demonstrate that the attention mechanism in
convolutional neural networks (CNNs) effectively improves accuracy. But little
works design attention mechanisms using large receptive fields. In this work,
we propose a novel attention method named Rega-net to increase CNN accuracy by
enlarging the receptive field. Inspired by the mechanism of the human retina,
we design convolutional kernels to resemble the non-uniformly distributed
structure of the human retina. Then, we sample variable-resolution values in
the Gabor function distribution and fill these values in retina-like kernels.
This distribution allows important features to be more visible in the center
position of the receptive field. We further design an attention module
including these retina-like kernels. Experiments demonstrate that our Rega-Net
achieves 79.963\% top-1 accuracy on ImageNet-1K classification and 43.1\% mAP
on COCO2017 object detection. The mAP of the Rega-Net increased by up to 3.5\%
compared to baseline networks.
- Abstract(参考訳): 大規模な研究は、畳み込みニューラルネットワーク(CNN)の注意機構が効果的に精度を向上させることを示した。
しかし、大きな受容場を用いた注意機構の設計はほとんど行われない。
そこで本研究では,rega-netという新しい注意手法を提案する。
ヒト網膜のメカニズムにインスパイアされた我々は、ヒト網膜の非一様分布構造に類似した畳み込みカーネルを設計する。
次に、Gabor関数分布の変数分解能値をサンプリングし、これらの値を網膜様のカーネルで埋める。
この分布により、受容野の中心位置において重要な特徴がより見えるようになる。
さらに、これらの網膜様カーネルを含む注目モジュールを設計する。
実験により、Rega-NetはImageNet-1K分類で79.963\%、COCO2017オブジェクト検出で43.1\%mAPを達成した。
Rega-NetのmAPはベースラインネットワークに比べて3.5\%増加した。
関連論文リスト
- DCNN: Dual Cross-current Neural Networks Realized Using An Interactive Deep Learning Discriminator for Fine-grained Objects [48.65846477275723]
本研究では、微細な画像分類の精度を向上させるために、新しい二重電流ニューラルネットワーク(DCNN)を提案する。
弱い教師付き学習バックボーンモデルを構築するための新しい特徴として、(a)異種データの抽出、(b)特徴マップの解像度の維持、(c)受容領域の拡大、(d)グローバル表現と局所特徴の融合などがある。
論文 参考訳(メタデータ) (2024-05-07T07:51:28Z) - Use of Parallel Explanatory Models to Enhance Transparency of Neural Network Configurations for Cell Degradation Detection [18.214293024118145]
我々は,ニューラルネットワークの内部動作を照らし,理解するための並列モデルを構築している。
RNNの各層が入力分布を変換して検出精度を高める方法を示す。
同時に、精度の向上を制限するために作用する副作用も発見する。
論文 参考訳(メタデータ) (2024-04-17T12:22:54Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
スペックルはSAR画像を劣化させるため、リモートセンシングにおいて重要な問題である。
近年の研究では、畳み込みニューラルネットワーク(CNN)が古典的解法よりも優れていることが示されている。
本研究は、受容場を制限することで低レベルの特徴を学習することに集中するために、過剰なCNNアーキテクチャを用いる。
本稿では,合成および実SAR画像の非特定化手法と比較して,提案手法により非特定化性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-31T15:55:37Z) - An Attention Module for Convolutional Neural Networks [5.333582981327498]
本稿では,AW-畳み込みを開発することで,畳み込みニューラルネットワークのためのアテンションモジュールを提案する。
画像分類とオブジェクト検出タスクのための複数のデータセットの実験により,提案した注目モジュールの有効性が示された。
論文 参考訳(メタデータ) (2021-08-18T15:36:18Z) - Implementing a foveal-pit inspired filter in a Spiking Convolutional
Neural Network: a preliminary study [0.0]
我々は,網膜卵管刺激によるガウスフィルタとランク順符号化の差異を取り入れたスポーキング畳み込みニューラルネットワーク(SCNN)を提示した。
このモデルは、Nengoライブラリーで実装されているように、スパイキングニューロンで動作するように適応されたバックプロパゲーションアルゴリズムの変種を用いて訓練される。
ネットワークは最大90%の精度で達成され、損失はクロスエントロピー関数を用いて計算される。
論文 参考訳(メタデータ) (2021-05-29T15:28:30Z) - Adder Neural Networks [75.54239599016535]
我々は、ディープニューラルネットワークにおける大規模な乗算を交換するために、加算器ネットワーク(AdderNets)を提案する。
AdderNetsでは、フィルタと入力特徴の間の$ell_p$-norm距離を出力応答として取ります。
提案したAdderNetsは,ImageNetデータセット上でResNet-50を用いて,75.7%のTop-1精度92.3%のTop-5精度を達成可能であることを示す。
論文 参考訳(メタデータ) (2021-05-29T04:02:51Z) - Involution: Inverting the Inherence of Convolution for Visual
Recognition [72.88582255910835]
本稿では,畳み込みの原理を逆転させることにより,深層ニューラルネットワークの新たな原子操作を提案する。
提案する畳み込み演算子は、視覚認識のための新しい世代のニューラルネットワークを構築するための基本ブロックとして利用することができる。
当社のInvolutionベースのモデルは、ResNet-50を使用した畳み込みベースラインのパフォーマンスを最大1.6%の精度、2.5%と2.4%のバウンディングボックスAP、4.7%は絶対にIoUを意味します。
論文 参考訳(メタデータ) (2021-03-10T18:40:46Z) - Semi-supervised deep learning based on label propagation in a 2D
embedded space [117.9296191012968]
提案されたソリューションは、少数の教師なしイメージから多数の教師なしイメージにラベルを伝達し、ディープニューラルネットワークモデルをトレーニングする。
本稿では、より正確なラベル付きサンプルを反復してセットから深層ニューラルネットワーク(VGG-16)をトレーニングするループを提案する。
ラベル付きセットがイテレーションに沿って改善されるにつれて、ニューラルネットワークの機能が改善される。
論文 参考訳(メタデータ) (2020-08-02T20:08:54Z) - ULSAM: Ultra-Lightweight Subspace Attention Module for Compact
Convolutional Neural Networks [4.143032261649983]
Ultra-Lightweight Subspace Attention Mechanism(ULSAM)は、エンドツーエンドのトレーニングが可能で、コンパクト畳み込みニューラルネットワーク(CNN)のプラグアンドプレイモジュールとしてデプロイできる。
FLOPとパラメータカウントの両方において$approx$13%と$approx$25%の削減を実現し、ImageNet-1Kおよびきめ細かい画像分類データセット上で、0.27%以上の精度と1%以上の精度で、MobileNet-V2のFLOPとパラメータカウントを削減した。
論文 参考訳(メタデータ) (2020-06-26T17:05:43Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。