論文の概要: Quality Assurance in MLOps Setting: An Industrial Perspective
- arxiv url: http://arxiv.org/abs/2211.12706v1
- Date: Wed, 23 Nov 2022 05:02:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 14:39:40.628400
- Title: Quality Assurance in MLOps Setting: An Industrial Perspective
- Title(参考訳): MLOps設定における品質保証 : 産業的展望
- Authors: Ayan Chatterjee, Bestoun S. Ahmed, Erik Hallin, Anton Engman
- Abstract要約: 機械学習(ML)は、産業において、プロダクションシステムのコア機能を提供するために広く使われている。
生産需要と時間の制約のため、自動化されたソフトウェアエンジニアリングプラクティスは高い適用性を持つ。
本稿では,産業MLOpsにおけるQA課題について検討し,データ整合性とデータ品質を扱うためのモジュール戦略を概念化する。
- 参考スコア(独自算出の注目度): 0.11470070927586014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Today, machine learning (ML) is widely used in industry to provide the core
functionality of production systems. However, it is practically always used in
production systems as part of a larger end-to-end software system that is made
up of several other components in addition to the ML model. Due to production
demand and time constraints, automated software engineering practices are
highly applicable. The increased use of automated ML software engineering
practices in industries such as manufacturing and utilities requires an
automated Quality Assurance (QA) approach as an integral part of ML software.
Here, QA helps reduce risk by offering an objective perspective on the software
task. Although conventional software engineering has automated tools for QA
data analysis for data-driven ML, the use of QA practices for ML in operation
(MLOps) is lacking. This paper examines the QA challenges that arise in
industrial MLOps and conceptualizes modular strategies to deal with data
integrity and Data Quality (DQ). The paper is accompanied by real industrial
use-cases from industrial partners. The paper also presents several challenges
that may serve as a basis for future studies.
- Abstract(参考訳): 現在、機械学習(ML)は、産業においてプロダクションシステムのコア機能を提供するために広く使われている。
しかし、MLモデルに加えて、他のいくつかのコンポーネントで構成された大規模エンドツーエンドソフトウェアシステムの一部として、実運用システムではほぼ常に使用されている。
生産需要と時間の制約のため、自動化されたソフトウェアエンジニアリングプラクティスは極めて適用性が高い。
製造業やユーティリティなどの業界における自動MLソフトウェアエンジニアリングプラクティスの利用の増加には、MLソフトウェアの重要な部分として、自動品質保証(QA)アプローチが必要である。
ここでは、QAはソフトウェアタスクに対する客観的な視点を提供することでリスクを減らすのに役立ちます。
従来のソフトウェアエンジニアリングには、データ駆動型MLのためのQAデータ分析のための自動化ツールがあるが、ML運用(MLOps)におけるQAプラクティスの使用は不足している。
本稿では,産業MLOpsにおけるQA課題について検討し,データ整合性とデータ品質(DQ)を扱うためのモジュール戦略を概念化する。
この論文には、産業パートナーによる実際の産業利用事例が添付されている。
また,今後の研究の基盤となるいくつかの課題について述べる。
関連論文リスト
- Creation and Evaluation of a Food Product Image Dataset for Product Property Extraction [39.58317527488534]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2024-11-15T21:29:05Z) - A Cyber Manufacturing IoT System for Adaptive Machine Learning Model Deployment by Interactive Causality Enabled Self-Labeling [0.0]
本稿では、エンドツーエンドのデータストリーミングパイプライン、MLサービス統合、自動自己ラベルサービスで構成されるAdaptIoTシステムを提案する。
このセルフラベルサービスは、因果的知識ベースと自動化されたフルサイクルのセルフラベルで構成され、複数のMLモデルを同時に適応させる。
自己ラベル適応型MLアプリケーションの実演はメーカースペースを用いて行われ、信頼性の高い性能を示す。
論文 参考訳(メタデータ) (2024-04-09T03:10:45Z) - Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
本稿では,製造シミュレーションのための量子コンピューティングによるサービスエコシステムの枠組みを提案する。
我々は,これらの新しい計算パラダイムを定量的に評価することを目的とした2つの高価値ユースケースを分析した。
論文 参考訳(メタデータ) (2024-01-19T11:04:14Z) - Machine Learning Meets Advanced Robotic Manipulation [48.6221343014126]
本論文は、最先端技術と、実世界の操作タスクに適用された機械学習手法の最近の動向についてレビューする。
論文の残りの部分は、産業、医療、農業、宇宙、軍事、捜索救助など、さまざまな分野におけるML応用に費やされている。
論文 参考訳(メタデータ) (2023-09-22T01:06:32Z) - Automated Machine Learning in the smart construction era:Significance
and accessibility for industrial classification and regression tasks [6.206133097433925]
本稿では,自動機械学習(AutoML)技術の建築産業への適用について検討する。
AutoMLを利用することで、建設専門家はソフトウェアを使用して産業データをプロジェクト管理を支援するMLモデルに処理できる。
論文 参考訳(メタデータ) (2023-08-03T03:17:22Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Quality Management of Machine Learning Systems [0.0]
機械学習(ML)技術の大きな進歩により、人工知能(AI)は私たちの日常生活の一部になっています。
ビジネス/ミッションクリティカルなシステムでは、AIアプリケーションの信頼性と保守性に関する深刻な懸念が残っている。
本稿では,MLアプリケーションのための総合的な品質管理フレームワークの展望について述べる。
論文 参考訳(メタデータ) (2020-06-16T21:34:44Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
本稿では,機械学習アプリケーション開発のためのプロセスモデルを提案する。
第1フェーズでは、データの可用性がプロジェクトの実現可能性に影響を与えることが多いため、ビジネスとデータの理解が結合されます。
第6フェーズでは、機械学習アプリケーションの監視とメンテナンスに関する最先端のアプローチがカバーされている。
論文 参考訳(メタデータ) (2020-03-11T08:25:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。