論文の概要: A Cyber Manufacturing IoT System for Adaptive Machine Learning Model Deployment by Interactive Causality Enabled Self-Labeling
- arxiv url: http://arxiv.org/abs/2404.05976v1
- Date: Tue, 9 Apr 2024 03:10:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 16:08:32.961442
- Title: A Cyber Manufacturing IoT System for Adaptive Machine Learning Model Deployment by Interactive Causality Enabled Self-Labeling
- Title(参考訳): 対話型因果認識による適応型機械学習モデル展開のためのサイバーマニュファクチャリングIoTシステム
- Authors: Yutian Ren, Yuqi He, Xuyin Zhang, Aaron Yen, G. P. Li,
- Abstract要約: 本稿では、エンドツーエンドのデータストリーミングパイプライン、MLサービス統合、自動自己ラベルサービスで構成されるAdaptIoTシステムを提案する。
このセルフラベルサービスは、因果的知識ベースと自動化されたフルサイクルのセルフラベルで構成され、複数のMLモデルを同時に適応させる。
自己ラベル適応型MLアプリケーションの実演はメーカースペースを用いて行われ、信頼性の高い性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning (ML) has been demonstrated to improve productivity in many manufacturing applications. To host these ML applications, several software and Industrial Internet of Things (IIoT) systems have been proposed for manufacturing applications to deploy ML applications and provide real-time intelligence. Recently, an interactive causality enabled self-labeling method has been proposed to advance adaptive ML applications in cyber-physical systems, especially manufacturing, by automatically adapting and personalizing ML models after deployment to counter data distribution shifts. The unique features of the self-labeling method require a novel software system to support dynamism at various levels. This paper proposes the AdaptIoT system, comprised of an end-to-end data streaming pipeline, ML service integration, and an automated self-labeling service. The self-labeling service consists of causal knowledge bases and automated full-cycle self-labeling workflows to adapt multiple ML models simultaneously. AdaptIoT employs a containerized microservice architecture to deliver a scalable and portable solution for small and medium-sized manufacturers. A field demonstration of a self-labeling adaptive ML application is conducted with a makerspace and shows reliable performance.
- Abstract(参考訳): 機械学習(ML)は多くの製造アプリケーションで生産性を向上させるために実証されている。
これらのMLアプリケーションをホストするために、MLアプリケーションをデプロイし、リアルタイムインテリジェンスを提供するアプリケーションを製造するために、いくつかのソフトウェアおよび産業用IoT(Industrial Internet of Things)システムが提案されている。
近年,サイバー物理システム,特に製造業において,データ分散シフトに対応するために展開後のMLモデルを自動的に適応・パーソナライズすることにより,適応型MLアプリケーションを進化させるための対話型因果対応型自己ラベル方式が提案されている。
自己ラベル方式のユニークな特徴は、様々なレベルでダイナミズムをサポートする新しいソフトウェアシステムを必要とする。
本稿では、エンドツーエンドのデータストリーミングパイプライン、MLサービス統合、自動自己ラベルサービスで構成されるAdaptIoTシステムを提案する。
このセルフラベルサービスは、因果的知識ベースと自動化されたフルサイクルのセルフラベルワークフローで構成され、複数のMLモデルを同時に適用する。
AdaptIoTはコンテナ化されたマイクロサービスアーキテクチャを使用して、小規模および中規模の製造業者にスケーラブルでポータブルなソリューションを提供する。
自己ラベル適応型MLアプリケーションの実演はメーカースペースを用いて行われ、信頼性の高い性能を示す。
関連論文リスト
- Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
自動機械学習(AutoML)は、機械学習(ML)を自動かつ効率的に構成する基本的目的を中心に形成された。
AutoMLの完全な可能性を解き放つ鍵は、現在探索されていないAutoMLシステムとのユーザインタラクションの側面に対処することにある、と私たちは主張する。
論文 参考訳(メタデータ) (2024-06-05T15:05:24Z) - SWITCH: An Exemplar for Evaluating Self-Adaptive ML-Enabled Systems [1.2277343096128712]
QoS(Quality of Service)の維持にはMLS(Machine Learning-Enabled Systems)が不可欠である
機械学習モデルバランサ(Machine Learning Model Balancer)は、動的MLモデルの切り替えを容易にすることで、これらの不確実性に対処する概念である。
本稿では,このようなシステムにおける自己適応能力を高めるために開発されたSWITCHを紹介する。
論文 参考訳(メタデータ) (2024-02-09T11:56:44Z) - Towards Self-Adaptive Machine Learning-Enabled Systems Through QoS-Aware
Model Switching [1.2277343096128712]
本稿では,機械学習モデルバランサの概念を提案し,複数のモデルを用いてMLモデルに関連する不確実性を管理する。
AdaMLSは、この概念を活用し、従来のMAPE-Kループを拡張した新しい自己適応手法である。
予備的な結果は、AdaMLSが保証において、単純で単一の最先端モデルを上回ることを示唆している。
論文 参考訳(メタデータ) (2023-08-19T09:33:51Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
本稿では,タスク指向のプロンプトを開発し,大規模言語モデル(LLM)を自動的に活用して学習パイプラインを自動化することを提案する。
本稿では,多様なAIモデルのブリッジとしてGPTを用いたAutoML-GPTを提案する。
このアプローチはコンピュータビジョン、自然言語処理、その他の課題領域において顕著な結果をもたらす。
論文 参考訳(メタデータ) (2023-05-04T02:09:43Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - Quality Assurance in MLOps Setting: An Industrial Perspective [0.11470070927586014]
機械学習(ML)は、産業において、プロダクションシステムのコア機能を提供するために広く使われている。
生産需要と時間の制約のため、自動化されたソフトウェアエンジニアリングプラクティスは高い適用性を持つ。
本稿では,産業MLOpsにおけるQA課題について検討し,データ整合性とデータ品質を扱うためのモジュール戦略を概念化する。
論文 参考訳(メタデータ) (2022-11-23T05:02:24Z) - SeLoC-ML: Semantic Low-Code Engineering for Machine Learning
Applications in Industrial IoT [9.477629856092218]
本稿では,Semantic Low-Code Engineering for ML Applications (SeLoC-ML) というフレームワークを提案する。
SeLoC-MLは、非専門家が大規模なMLモデルやデバイスをモデル化し、発見し、再利用することを可能にする。
開発者は、レシピと呼ばれるセマンティックなアプリケーションテンプレートから、エンドユーザアプリケーションのプロトタイプを高速に作成できる。
論文 参考訳(メタデータ) (2022-07-18T13:06:21Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - LightAutoML: AutoML Solution for a Large Financial Services Ecosystem [108.09104876115428]
本稿では、ヨーロッパ大手金融サービス会社向けに開発されたLightAutoMLと呼ばれるAutoMLシステムについて述べる。
当社のフレームワークは、多数のアプリケーションに試験的にデプロイされ、経験豊富なデータサイエンティストのレベルで実行されました。
論文 参考訳(メタデータ) (2021-09-03T13:52:32Z) - Data Analytics and Machine Learning Methods, Techniques and Tool for
Model-Driven Engineering of Smart IoT Services [0.0]
この論文は、IoT(Internet of Things)とCPS(Smart Cyber-Physical Systems)のためのスマートサービス開発を促進する新しいアプローチを提案する。
提案されたアプローチは、ソフトウェアエンジニアリングプロセスの抽象化と自動化、データ分析(DA)と機械学習(ML)のプラクティスを提供する。
我々はThingMLと呼ばれるオープンソースモデリングツールを拡張して提案手法の実装と検証を行う。
論文 参考訳(メタデータ) (2021-02-12T11:09:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。