Developmental Plasticity-inspired Adaptive Pruning for Deep Spiking and Artificial Neural Networks
- URL: http://arxiv.org/abs/2211.12714v3
- Date: Mon, 28 Oct 2024 09:15:12 GMT
- Title: Developmental Plasticity-inspired Adaptive Pruning for Deep Spiking and Artificial Neural Networks
- Authors: Bing Han, Feifei Zhao, Yi Zeng, Guobin Shen,
- Abstract summary: Developmental plasticity plays prominent role in shaping the brain's structure during ongoing learning.
Existing network compression methods for deep artificial neural networks (ANNs) and spiking neural networks (SNNs) draw little inspiration from brain's developmental plasticity mechanisms.
This paper proposes a developmental plasticity-inspired adaptive pruning (DPAP) method, with inspiration from the adaptive developmental pruning of dendritic spines, synapses, and neurons.
- Score: 11.730984231143108
- License:
- Abstract: Developmental plasticity plays a prominent role in shaping the brain's structure during ongoing learning in response to dynamically changing environments. However, the existing network compression methods for deep artificial neural networks (ANNs) and spiking neural networks (SNNs) draw little inspiration from brain's developmental plasticity mechanisms, thus limiting their ability to learn efficiently, rapidly, and accurately. This paper proposed a developmental plasticity-inspired adaptive pruning (DPAP) method, with inspiration from the adaptive developmental pruning of dendritic spines, synapses, and neurons according to the ``use it or lose it, gradually decay" principle. The proposed DPAP model considers multiple biologically realistic mechanisms (such as dendritic spine dynamic plasticity, activity-dependent neural spiking trace, and local synaptic plasticity), with additional adaptive pruning strategy, so that the network structure can be dynamically optimized during learning without any pre-training and retraining. Extensive comparative experiments show consistent and remarkable performance and speed boost with the extremely compressed networks on a diverse set of benchmark tasks for deep ANNs and SNNs, especially the spatio-temporal joint pruning of SNNs in neuromorphic datasets. This work explores how developmental plasticity enables complex deep networks to gradually evolve into brain-like efficient and compact structures, eventually achieving state-of-the-art (SOTA) performance for biologically realistic SNNs.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Evolving Self-Assembling Neural Networks: From Spontaneous Activity to Experience-Dependent Learning [7.479827648985631]
We propose a class of self-organizing neural networks capable of synaptic and structural plasticity in an activity and reward-dependent manner.
Our results demonstrate the ability of the model to learn from experiences in different control tasks starting from randomly connected or empty networks.
arXiv Detail & Related papers (2024-06-14T07:36:21Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - MAP-SNN: Mapping Spike Activities with Multiplicity, Adaptability, and
Plasticity into Bio-Plausible Spiking Neural Networks [4.806663076114504]
Spiking Neural Network (SNN) is considered more biologically realistic and power-efficient as it imitates the fundamental mechanism of the human brain.
We consider three properties in modeling spike activities: Multiplicity, Adaptability, and Plasticity (MAP)
The proposed SNN model achieves competitive performances on neuromorphic datasets: N-MNIST and SHD.
arXiv Detail & Related papers (2022-04-21T05:36:11Z) - Towards efficient end-to-end speech recognition with
biologically-inspired neural networks [10.457580011403289]
We introduce neural connectivity concepts emulating the axo-somatic and the axo-axonic synapses.
We demonstrate for the first time, that a biologically realistic implementation of a large-scale ASR model can yield competitive performance levels.
arXiv Detail & Related papers (2021-10-04T21:24:10Z) - Learning in Deep Neural Networks Using a Biologically Inspired Optimizer [5.144809478361604]
We propose a novel biologically inspired for artificial (ANNs) and spiking neural networks (SNNs)
GRAPES implements a weight-distribution dependent modulation of the error signal at each node of the neural network.
We show that this biologically inspired mechanism leads to a systematic improvement of the convergence rate of the network, and substantially improves classification accuracy of ANNs and SNNs.
arXiv Detail & Related papers (2021-04-23T13:50:30Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.