PANeRF: Pseudo-view Augmentation for Improved Neural Radiance Fields
Based on Few-shot Inputs
- URL: http://arxiv.org/abs/2211.12758v1
- Date: Wed, 23 Nov 2022 08:01:10 GMT
- Title: PANeRF: Pseudo-view Augmentation for Improved Neural Radiance Fields
Based on Few-shot Inputs
- Authors: Young Chun Ahn, Seokhwan Jang, Sungheon Park, Ji-Yeon Kim, Nahyup Kang
- Abstract summary: neural radiance fields (NeRF) have promising applications for novel views of complex scenes.
NeRF requires dense input views, typically numbering in the hundreds, for generating high-quality images.
We propose pseudo-view augmentation of NeRF, a scheme that expands a sufficient amount of data by considering the geometry of few-shot inputs.
- Score: 3.818285175392197
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The method of neural radiance fields (NeRF) has been developed in recent
years, and this technology has promising applications for synthesizing novel
views of complex scenes. However, NeRF requires dense input views, typically
numbering in the hundreds, for generating high-quality images. With a decrease
in the number of input views, the rendering quality of NeRF for unseen
viewpoints tends to degenerate drastically. To overcome this challenge, we
propose pseudo-view augmentation of NeRF, a scheme that expands a sufficient
amount of data by considering the geometry of few-shot inputs. We first
initialized the NeRF network by leveraging the expanded pseudo-views, which
efficiently minimizes uncertainty when rendering unseen views. Subsequently, we
fine-tuned the network by utilizing sparse-view inputs containing precise
geometry and color information. Through experiments under various settings, we
verified that our model faithfully synthesizes novel-view images of superior
quality and outperforms existing methods for multi-view datasets.
Related papers
- NeRF-VPT: Learning Novel View Representations with Neural Radiance
Fields via View Prompt Tuning [63.39461847093663]
We propose NeRF-VPT, an innovative method for novel view synthesis to address these challenges.
Our proposed NeRF-VPT employs a cascading view prompt tuning paradigm, wherein RGB information gained from preceding rendering outcomes serves as instructive visual prompts for subsequent rendering stages.
NeRF-VPT only requires sampling RGB data from previous stage renderings as priors at each training stage, without relying on extra guidance or complex techniques.
arXiv Detail & Related papers (2024-03-02T22:08:10Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
We introduce Deceptive-NeRF/3DGS to enhance sparse-view reconstruction with only a limited set of input images.
Specifically, we propose a deceptive diffusion model turning noisy images rendered from few-view reconstructions into high-quality pseudo-observations.
Our system progressively incorporates diffusion-generated pseudo-observations into the training image sets, ultimately densifying the sparse input observations by 5 to 10 times.
arXiv Detail & Related papers (2023-05-24T14:00:32Z) - NeRFLiX: High-Quality Neural View Synthesis by Learning a
Degradation-Driven Inter-viewpoint MiXer [44.220611552133036]
We propose NeRFLiX, a general NeRF-agnostic restorer paradigm by learning a degradation-driven inter-viewpoint mixer.
We also propose an inter-viewpoint aggregation framework that is able to fuse highly related high-quality training images.
arXiv Detail & Related papers (2023-03-13T08:36:30Z) - Self-NeRF: A Self-Training Pipeline for Few-Shot Neural Radiance Fields [17.725937326348994]
We propose Self-NeRF, a self-evolved NeRF that iteratively refines the radiance fields with very few number of input views.
In each iteration, we label unseen views with the predicted colors or warped pixels generated by the model from the preceding iteration.
These expanded pseudo-views are afflicted by imprecision in color and warping artifacts, which degrades the performance of NeRF.
arXiv Detail & Related papers (2023-03-10T08:22:36Z) - StegaNeRF: Embedding Invisible Information within Neural Radiance Fields [61.653702733061785]
We present StegaNeRF, a method for steganographic information embedding in NeRF renderings.
We design an optimization framework allowing accurate hidden information extractions from images rendered by NeRF.
StegaNeRF signifies an initial exploration into the novel problem of instilling customizable, imperceptible, and recoverable information to NeRF renderings.
arXiv Detail & Related papers (2022-12-03T12:14:19Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
We propose Augmented NeRF (Aug-NeRF), which for the first time brings the power of robust data augmentations into regularizing the NeRF training.
Our proposal learns to seamlessly blend worst-case perturbations into three distinct levels of the NeRF pipeline.
Aug-NeRF effectively boosts NeRF performance in both novel view synthesis and underlying geometry reconstruction.
arXiv Detail & Related papers (2022-07-04T02:27:07Z) - NeRF-SR: High-Quality Neural Radiance Fields using Super-Sampling [82.99453001445478]
We present NeRF-SR, a solution for high-resolution (HR) novel view synthesis with mostly low-resolution (LR) inputs.
Our method is built upon Neural Radiance Fields (NeRF) that predicts per-point density and color with a multi-layer perceptron.
arXiv Detail & Related papers (2021-12-03T07:33:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.