論文の概要: NAS-LID: Efficient Neural Architecture Search with Local Intrinsic
Dimension
- arxiv url: http://arxiv.org/abs/2211.12759v2
- Date: Thu, 24 Nov 2022 12:49:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 12:09:39.563044
- Title: NAS-LID: Efficient Neural Architecture Search with Local Intrinsic
Dimension
- Title(参考訳): NAS-LID:局所固有次元を用いた効率的なニューラルネットワーク探索
- Authors: Xin He, Jiangchao Yao, Yuxin Wang, Zhenheng Tang, Ka Chu Cheung, Simon
See, Bo Han, and Xiaowen Chu
- Abstract要約: ワンショットアーキテクチャサーチ (NAS) は、1つのスーパーネットをトレーニングして全ての子アーキテクチャーを推定することにより、探索効率を大幅に向上させる。
NASBench-201の実験は、NAS-LIDが優れた効率で優れた性能を発揮することを示している。
- 参考スコア(独自算出の注目度): 37.04463309816036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One-shot neural architecture search (NAS) substantially improves the search
efficiency by training one supernet to estimate the performance of every
possible child architecture (i.e., subnet). However, the inconsistency of
characteristics among subnets incurs serious interference in the optimization,
resulting in poor performance ranking correlation of subnets. Subsequent
explorations decompose supernet weights via a particular criterion, e.g.,
gradient matching, to reduce the interference; yet they suffer from huge
computational cost and low space separability. In this work, we propose a
lightweight and effective local intrinsic dimension (LID)-based method NAS-LID.
NAS-LID evaluates the geometrical properties of architectures by calculating
the low-cost LID features layer-by-layer, and the similarity characterized by
LID enjoys better separability compared with gradients, which thus effectively
reduces the interference among subnets. Extensive experiments on NASBench-201
indicate that NAS-LID achieves superior performance with better efficiency.
Specifically, compared to the gradient-driven method, NAS-LID can save up to
86% of GPU memory overhead when searching on NASBench-201. We also demonstrate
the effectiveness of NAS-LID on ProxylessNAS and OFA spaces. Source code:
https://github.com/marsggbo/NAS-LID.
- Abstract(参考訳): ワンショットニューラルアーキテクチャサーチ(NAS)は、1つのスーパーネットをトレーニングし、全ての子アーキテクチャ(サブネット)の性能を推定することで、探索効率を大幅に向上させる。
しかし、サブネット間の特性の不整合は、最適化に重大な干渉を引き起こし、サブネットの性能ランキングの相関が低くなる。
その後の探査では、特定の基準、例えば勾配マッチングによって超ネット重量を分解して干渉を減らすが、計算コストと空間分離性に悩まされる。
本研究では,軽量で効果的な局所固有次元(LID)に基づくNAS-LID法を提案する。
NAS-LIDは、低コストのLID特徴層を層単位で計算し、アーキテクチャの幾何学的性質を評価し、LIDの特徴となる類似性は勾配よりも分離性が良く、サブネット間の干渉を効果的に低減する。
nasbench-201の広範な実験は、nas-lidがより効率良く優れた性能を達成していることを示している。
特に、勾配駆動法と比較してNAS-LIDはNASBench-201を検索すると最大86%のGPUメモリオーバーヘッドを節約できる。
また,NAS-LID が ProxylessNAS および OFA 空間に与える影響を示す。
ソースコードはhttps://github.com/marsggbo/NAS-LID。
関連論文リスト
- Delta-NAS: Difference of Architecture Encoding for Predictor-based Evolutionary Neural Architecture Search [5.1331676121360985]
我々は,NASの微粒化を低コストで行うアルゴリズムを構築した。
類似ネットワークの精度の差を予測することにより,問題を低次元空間に投影することを提案する。
論文 参考訳(メタデータ) (2024-11-21T02:43:32Z) - Are Neural Architecture Search Benchmarks Well Designed? A Deeper Look
Into Operation Importance [5.065947993017157]
我々は、広く使われているNAS-Bench-101、NAS-Bench-201、TransNAS-Bench-101ベンチマークを実証分析した。
性能範囲の上限に近いアーキテクチャを生成するためには,操作プールのサブセットのみが必要であることがわかった。
一貫性のある畳み込みレイヤは、アーキテクチャのパフォーマンスに最も影響していると考えています。
論文 参考訳(メタデータ) (2023-03-29T18:03:28Z) - Generalization Properties of NAS under Activation and Skip Connection
Search [66.8386847112332]
ニューラルネットワーク探索(NAS)の一般化特性を統一的枠組みの下で検討する。
我々は, 有限幅政権下でのニューラル・タンジェント・カーネル(NTK)の最小固有値の下(および上)境界を導出する。
トレーニングなしでもNASがトップパフォーマンスアーキテクチャを選択する方法を示す。
論文 参考訳(メタデータ) (2022-09-15T12:11:41Z) - Generalizing Few-Shot NAS with Gradient Matching [165.5690495295074]
One-Shotメソッドは、1つのスーパーネットをトレーニングし、ウェイトシェアリングを通じて検索空間内の全てのアーキテクチャのパフォーマンスを近似する。
Few-Shot NASは、One-Shotスーパーネットを複数のサブスーパーネットに分割することで、ウェイトシェアリングのレベルを下げる。
Few-Shotよりも優れており、派生したアーキテクチャの精度という点では、従来の同等の手法をはるかに上回っている。
論文 参考訳(メタデータ) (2022-03-29T03:06:16Z) - NAS-FCOS: Efficient Search for Object Detection Architectures [113.47766862146389]
簡易なアンカーフリー物体検出器の特徴ピラミッドネットワーク (FPN) と予測ヘッドを探索し, より効率的な物体検出手法を提案する。
慎重に設計された検索空間、検索アルゴリズム、ネットワーク品質を評価するための戦略により、8つのV100 GPUを使用して、4日以内に最高のパフォーマンスの検知アーキテクチャを見つけることができる。
論文 参考訳(メタデータ) (2021-10-24T12:20:04Z) - L$^{2}$NAS: Learning to Optimize Neural Architectures via
Continuous-Action Reinforcement Learning [23.25155249879658]
微分可能なアーキテクチャサーチ(NAS)は、ディープニューラルネットワーク設計において顕著な結果を得た。
L$2$は,DART201ベンチマークやNASS,Imse-for-All検索ポリシで,最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-09-25T19:26:30Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
微分可能なArchiTecture Search(DARTS)は先日,ニューラルアーキテクチャサーチ(NAS)の主流になった。
暗黙の関数定理に基づいてDARTSの過次計算に取り組む。
提案手法であるiDARTSのアーキテクチャ最適化は,定常点に収束することが期待される。
論文 参考訳(メタデータ) (2021-06-21T00:44:11Z) - AdvantageNAS: Efficient Neural Architecture Search with Credit
Assignment [23.988393741948485]
ワンショット・スパース伝播NAS(AdvantageNAS)の新たな探索戦略を提案する。
アドバンテージNASは、アーキテクチャ更新の勾配推定にクレジット割り当てを導入することで検索効率を向上させるグラデーションベースのアプローチです。
NAS-Bench-201およびPTBデータセットの実験は、AdvantageNASが限られた時間予算でより高いパフォーマンスのアーキテクチャを発見することを示しています。
論文 参考訳(メタデータ) (2020-12-11T05:45:03Z) - Binarized Neural Architecture Search for Efficient Object Recognition [120.23378346337311]
バイナリ化されたニューラルネットワークサーチ(BNAS)は、エッジコンピューティング用の組み込みデバイスにおいて、膨大な計算コストを削減するために、極めて圧縮されたモデルを生成する。
9,6.53%対9,7.22%の精度はCIFAR-10データセットで達成されるが、かなり圧縮されたモデルで、最先端のPC-DARTSよりも40%速い検索が可能である。
論文 参考訳(メタデータ) (2020-09-08T15:51:23Z) - DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning [135.27931587381596]
DDPNASと呼ばれる効率よく統一されたNASフレームワークを提案する。
検索空間は動的に切断され,その分布はいくつかのエポック毎に更新される。
提案した効率的なネットワーク生成手法により,与えられた制約に対する最適なニューラルネットワークアーキテクチャを直接取得する。
論文 参考訳(メタデータ) (2019-05-28T06:35:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。