論文の概要: A Dual-scale Lead-seperated Transformer With Lead-orthogonal Attention
And Meta-information For Ecg Classification
- arxiv url: http://arxiv.org/abs/2211.12777v1
- Date: Wed, 23 Nov 2022 08:45:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 15:25:17.478728
- Title: A Dual-scale Lead-seperated Transformer With Lead-orthogonal Attention
And Meta-information For Ecg Classification
- Title(参考訳): リード・orthogonal attentionとecg分類のためのメタ情報を有するデュアルスケールリードセパレートトランス
- Authors: Yang Li, Guijin Wang, Zhourui Xia, Wenming Yang, Li Sun
- Abstract要約: 本研究は、鉛直交注意とメタ情報(DLTM-ECG)を併用したデュアルスケールリード分離変圧器を提案する。
ECGセグメントは独立パッチとして解釈され、縮小次元信号と共に二重スケールの表現を形成する。
我々の研究は、同様の多チャンネル生体電気信号処理や生理的多モードタスクの可能性を秘めている。
- 参考スコア(独自算出の注目度): 26.07181634056045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Auxiliary diagnosis of cardiac electrophysiological status can be obtained
through the analysis of 12-lead electrocardiograms (ECGs). This work proposes a
dual-scale lead-separated transformer with lead-orthogonal attention and
meta-information (DLTM-ECG) as a novel approach to address this challenge. ECG
segments of each lead are interpreted as independent patches, and together with
the reduced dimension signal, they form a dual-scale representation. As a
method to reduce interference from segments with low correlation, two group
attention mechanisms perform both lead-internal and cross-lead attention. Our
method allows for the addition of previously discarded meta-information,
further improving the utilization of clinical information. Experimental results
show that our DLTM-ECG yields significantly better classification scores than
other transformer-based models,matching or performing better than
state-of-the-art (SOTA) deep learning methods on two benchmark datasets. Our
work has the potential for similar multichannel bioelectrical signal processing
and physiological multimodal tasks.
- Abstract(参考訳): 12誘導心電図(ECG)を用いて心電気生理学的状態の補助診断を行うことができる。
本研究は、この課題に対処するための新しいアプローチとして、鉛直交の注意とメタ情報(DLTM-ECG)を用いたデュアルスケールリード分離変換器を提案する。
各リードのECGセグメントは独立パッチとして解釈され、縮小次元信号と共に二重スケールの表現を形成する。
相関の低いセグメントからの干渉を低減する方法として、2つのグループアテンション機構がリードインターナルとクロスリードの両方のアテンションを実行する。
従来廃棄されていたメタ情報の付加が可能であり,臨床情報の利用性がさらに向上する。
実験の結果,我々のDLTM-ECGは,2つのベンチマークデータセット上での最先端(SOTA)深層学習手法よりも,他のトランスフォーマーベースモデルよりもはるかに優れた分類スコアが得られることがわかった。
本研究は,同様の生体電気信号処理と生理的マルチモーダルタスクの可能性を秘めている。
関連論文リスト
- C-MELT: Contrastive Enhanced Masked Auto-Encoders for ECG-Language Pre-Training [10.088785685439134]
本稿では,コントラッシブマスクを用いた自動エンコーダアーキテクチャを用いて,ECGとテキストデータを事前学習するフレームワークであるC-MELTを提案する。
C-MELTは、生成性の強さと識別能力の強化を一意に組み合わせて、堅牢なクロスモーダル表現を実現する。
論文 参考訳(メタデータ) (2024-10-03T01:24:09Z) - ECGMamba: Towards Efficient ECG Classification with BiSSM [3.0120310355085467]
本稿では,双方向状態空間モデル(BiSSM)を用いて分類効率を向上させる新しいモデルECGMambaを提案する。
2つの公開ECGデータセットの実験結果は、ECGMambaが効果的に分類の有効性と効率のバランスをとることを示した。
論文 参考訳(メタデータ) (2024-06-14T14:55:53Z) - NERULA: A Dual-Pathway Self-Supervised Learning Framework for Electrocardiogram Signal Analysis [5.8961928852930034]
本稿では,シングルリードECG信号を対象とした自己教師型フレームワークNERULAを提案する。
NERULAのデュアルパスウェイアーキテクチャは、心電図再構成と非コントラスト学習を組み合わせて、詳細な心臓の特徴を抽出する。
学習スペクトルに生成経路と識別経路を組み合わせることで、様々なタスクにおいて最先端の自己教師付き学習ベンチマークより優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2024-05-21T14:01:57Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - A Transformer Architecture for Stress Detection from ECG [7.559720049837459]
本稿では、畳み込み層に基づくディープニューラルネットワークと、ECG信号を用いたストレス検出のためのトランスフォーマー機構を提案する。
実験の結果,提案手法は心電図に基づくストレス検出のための最先端モデルに匹敵する,あるいは優れた結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-08-22T14:34:44Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
心電図(PCG)信号を心臓状態に分割するための新しい枠組みを提案する。
我々は近年の注目に基づく学習の進歩を利用してPCG信号のセグメンテーションを行う。
提案手法は,ヒトと動物の両方の心臓記録を含む複数のベンチマークにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-04-02T02:09:11Z) - Detecting Pancreatic Ductal Adenocarcinoma in Multi-phase CT Scans via
Alignment Ensemble [77.5625174267105]
膵管腺癌(PDAC)は最も致命的ながんの1つである。
複数のフェーズは単一のフェーズよりも多くの情報を提供するが、それらは整列せず、テクスチャにおいて不均一である。
PDAC検出性能を高めるために,これらすべてのアライメントのアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-03-18T19:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。